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The magnetic properties of electrons in a metal are investigated for the case of an
arbitrary dispersion law. The energy levels are found for a quasi-particle under an
arbitrary dispersion law in a magnetic field, and the magnetic moment of a gas of such
quasi-particles is computed, spin paramagnetism being taken into account. It is shown
that the periods and amplitudes of the oscillations are determined by the form of the Fermi
boundary surface. Knowledge of these quantities permits one to reconstruct the form of the
Fermi surface and the values of thevelocities upon it.

INTRODUCTION

HE question of the electron energy spectrum is

of central importance in the construction of a
quantum theory of metals. There is every reason
to suppose that the electron spectrum for metals is
of the Fermi type. This implies that at low
temperatures the electrons in the metal, interacting
with one another and with the lattice, may be
replaced for thermodynamic purposes by an ideal
Fermi gas of charged particles following some
dispersion law £=¢ (px, Py p,). The majority
of the thermodynamic and kinetic properties of a
degenerate Fermi gas, however, are highly
insensitive to the dispersion law, as a consequence
of which their investigation does not permit one to
draw any conclusions concsrning the form of the
law.

Substantially different in this respect is the
behavior of certain magnetic properties of metals
— in particular, oscillations of the magnetic
susceptibility - which, it appears, depend strongly
upon the electron energy spectrum and may serve
to distinguish it unique{y.

The periodic dependence of the magnetic
susceptibility upon the field at low temperatures
(the De Hass - Van Alphen effect) has by now
been observed for a large number of metals (Bi,

Sb, Hg, Zn, Cd, Be, C, Mg, Ga, In, Sn, T1, AD*

and may be regarded as a property common to all
metals. At the same time, the quantitative theory
of this phenomenon had until recently been worked

1g. Verkin, B. Lazarev, N. Rudenko, J. Exper.
Theoret. Phys. USSR 20, 93, 995 (1950); 21, 658(1951);
Dokl. Akad. Nauk SSSR 80, 45 (1951); the collection
“In Memory of Sergei Ivanovich Vavilov’’, Acad. Sci.
USSR Press, 1952. B.Verkin, Dokl. Akad. Nauk SSSR
81, 529 (1951); B. Verkin, I. Mikhailov, J. Exper.
Theoret. Phys. USSR 24, 324 (1953); 25, 471 83953).

out only for the case of an electron gas following
a quadratic dispersion law?’ 22,

The quadratic dispersion law is correct for an
electron in a metal only in the lower part of the
appropriate ensrgy zone, and may be used to
investigate the magnetic properties of metals
having a small number of conduction electrons
(such as Bi). In general, however, there is no
justification for the use of a quadratic dispersion
law, as a consequence of which it is essential
to determine to just what extent the peculiarities
of the effect are to be attributed to the electronic
dispersion law. Certain qualitative considerations
associated with this circumstance have been
presented earlier by Onsager3. A qualitative
theory has been offered in a paper by the present
authors®.

The present article contains a detailed presenta-
tion of the results published earlier in the brief
communication?, with, in addition. a treatment of
the spin paramagnetism ( a treatment of spin
paramagnetism for the case of a quadratic disper-
sion law has been given elsewhere 22).

1. ENERGY LEVELS OF A
IN A MAGNETIC

UASI-P ARTICLE
1ELD

We investigate the motion of a charged quasi-

2L, Landau, Z. f. Phys. 64, 629 (1930); Supplement
Eo the article: D. Shoenberg, Proc. Roy. Soc. 170A, 341
1939).

2aA, Akhiezer, Dokl. Akad. Nauk SSSR 23, 872 (1939);
Iu. Rumer, J. Exper. Theoret. Phys. USSR 18, 1081
(1948); G. Zil’berman, J. Exper. Theoret. Phys. USSR
2T, 1209 (1951); E. Sondheimer, A. Wilson, Proc. Roy.
Soc. (London) 2104, 173 (1951).

3 L. Onsager, Phil. Mag. 43, 1006 (1952)

4 1. Lifshitz and A. Kosevich, Dokl. Akad. Nauk SSSR
96, 963 (1954).
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particle under a general dispersion law
6 - 6([7):, P_v, Pz)

in a homogeneous magnetic field.

If the magnetic field H is directed along the
z - axis, the Hamiltonian for such a particle in the
magnetic field is obtained formally by replacing in
(1.1) the momentum component p, by the linear

(1.1)

v
momentum operator P , the latter bemg interrelated

by the commutation rules:

B,, P,
Py Bl 1.2)

=2H, [Py, P.,] =[P, P.] =0

. . v Y

This relation between Px and P

the adjustable relation between the generalized
coordmate and the generalized momentum:

Q I=1.
%he role of the generalized coordmate operator
is played here by the operator (c/eH)P There-

fore the quasi-classical quantization condition
1
= § P =(n+ )1
may be written in the form:

(c/2neH) § P,aP,

corresponds to

(1.3)

=@r+1Nr (0<1<1)

(for the case of a quadratic dispersion law y = %;
in the general case, however, y may differ from %).
The integral §P dP defines the area bounded by

the plane closed curve

& (Px, Py, P;) = E = const,

(1.4)
P, = p: = const,

which allows (1.3) to be written in the more sym-
metrical form:

S(E, p) ESS dP.dPy = (n +y)2en L, (1.5)

the double integral being taken over the region
bounded by the curve (1.4). Here S(E, pz) is the

area intercepted on the surface of constant energy

& (Pe Py, Pi)=E (1.6)

by a plane perpendicular to the direction of the
magnetic field.

The condition (1.5) specifies, in the quasi-
classical approximation, the 1mphclt dependence
of the energy of a quasi-particle in a magnetic
field upon the quantum number n:

E=En(pz; H). 1.n

In accordance with (1.5), the distance between the
energy levels will be

AE, = Eny1:—FE, = 2xheH|(cdS|IE).

If the quasi-particle possesses spin }; and has a
magnetic moment Jou = Ja(efi/m c), then in the
expression for the energy of such a particle the two
possible orientations of the spin relative to the
direction of the magnetic field H must be taken
into account:

E=En(pz; H)4+,po H

(1.8)

Thus, the energy levels in a magnetic field of a

quasx-partlcle having an arbitrary dispersion law
and a spin }4, which we shall henceforth refer to as

an electron, are given by the expression (1.8);
m,, which appears in the definition of y,
represents the mass of the electron.

It should be remarked that the components p; in
(1.1) for electrons in a metal are components of a
quasi-momentum. This fact, however, does not
affect the results obtained, provided that the
surface (1.6) does not intersect itself, and that
each of the curves (1 .4) is located within one of
the cells of the reciprocal lattice. In addition, the
radius of curvature of the electron trajectory must
clearly be assumed to be large compared to the
lattice constant.

2. CALCULATION OF THE MAGNETIC MOMENT

The magnetic moment M of the electron gas is
found by taking the derivative of the thermodynamic
potential Q with respect to the field : M=—09Q /dH.
To determine the thermodynamic potential Q we
make use of the usual formula of statistical
mechanics:

Q= —@Z ln{l + exp
S

E:_E_ﬂ} (2.1)
9 ’

where E(s) is the energy of the electron in the
state s, ¢ is the chemical potential, @ = k7', and
the summation is performed over all of the possible
states s of the individual electron. The energy
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E(s) for an electron in a state with given P, M and

direction of spin is given by the expression (1.8).
Since, in computing the number of states, the
commutation relations (1.9 rather than the disper-
sion law for the electrons are the essential factor,

the number of states is calculated by the same
method as that used by Landau for free electrons™;

in particular, it is possible to state that the
number of states of momentum p, in the interval
(p,, p, +Ap,) for a givenn and a given spin
orientation is equal to

e
V e APz

Therefore, (2.1) may be rewritten in the form:

Q‘:—VZ;—;EE e gdpz

Spin =0 — (2-2)
—E (p, HY 1
X In {1 + expC z (pz’eﬁ) + /WOH}.

Representing the expression following the sum-
mation sign in (2.2) by ¢(n), we use for the summa-
tion over n the Poisson formula®:

_ > eH 1 ¢
O=—Vigm Mz 20+ dne
spin 0

+ 2 i <§> dno(n) cosQ—r:kn}.
0

h=1

Inasmuch as y — % for E — E , it may readily
be shown that the thermodynamic potential can be
written in the following form:

[e2]
O— __\_eH !
1% Zrﬁh._,c;‘ { S dn o (n) (2.3)
spin —/s
-+ 2Re “S dn o(n) eznkin} .
k=1

’
_l/:

The first term inside the curly brackets
.corresponds to the continuous energy spectrum. It
can easily be shown that this term will contribute
only to the spin paramagnetism of the electron gas.
Introducing the symbol € = ¢ * 5/2/10/1, we obtain

5 Courant and Hilbert, “Methods of Mathematical
Physics”, v. 1
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Jy= ‘io dng(n)
i1,
=6 § dn 080 dp,In {1 4 =08
- 2
= @SodEln { 1+ e(e—En)/e} Sdpz(%)

S>o

where S =S (£, pz).
The relation between E and n is given by the
expression (1.5), and hence

on c 0§

0E = SmehHOE’ (2.4)
Oc ¢

1= 5eeni % dE (2.5)
0

L ple—E)l0 oS

X In{l + ey { dp (25
S>0

Taking into consideration the nature of the

limits of integration for the inner integral in (2.5),
we write

B¢ C
Ji= 2neh H § dE (2.6)
x1n {1+ et—E)o) 4 S dp.S(E, p)
dE z L £
S>0
c ¢ dE .
= OmenH S e E—2)0 4 ¢ \S S(E, pz) dpz'
0 S>0

We now note that the inner integral in (2.6) gives
the volume bounded by the surface of constant
energy £ in momentun; space. Representing this
volume by U(E), and introducing the expression

>
W(e) = S

0

U (E)dE
e(E_E)/e _*_ 1 ’

we obtain

= —J«__ 7 (=3 2'7
! 2meh H W), @D
Making use of the fact that poll < ¢, we can
expand W( €) in powers of oft, stooping with the
second-order terms. If we insert this expansion
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into (2.3) and sum over the two possible spin
orientations, it is seen that the corresponding part
of the thermodynamic potential Q is equal to

Y [aw + (SLPELQ). @9

Q =—
I, therefore, actually contributes only to the spin
paramagnetism of the electron gas:

Mlz = P'()V ! dZW(t)

W) (2.9)
16mh3 42

trofd.

The expression (2.9) has a simple physical
interpretation. Under the condition @ < ¢, which
we shall consider always to be fulfilled, one can
set

g
W)~ U B dE,
0
which implies
2w (@ _du (@
i<
The product
vV dUu
o % =p (%) (2.10)

gives the number of states per unit energy interval
at the Fermi boundary energy; (2.9) may therefore
be written in the form

Mlz = 1/2 Pop (C) P«oH

The diamagnetism of the electron gas and the
De Haas - Van Alphen effect are described by the
second term in the curly brackets in (2.3). Using
(1.5) and (2.4), we can transform the integrals

entering into this term:
(oo}

(2.11)

J (k) = dn ¢ (n) ezmkin
—il,
= 8 S: dn Emdpz In {1 + exp — Iew”“
= zﬁe iodEln 1+ exps"(;E}
0
X 5 dpz( )exp{ehH S(E, p,) — Qﬁkiq}.
S>0

Integration by parts leads to the expression

639
I () = MHS dE f(*5)
E 95 (E'.p.) (2.12)
e §an, 2522
0 S>0
X exp {i , p,)—2= leJL

fx) represents the Fermi distribution function:
f@)=Q1Q+e9?!

In computing the inner double integral in (2.12)
we make use of the fact that under the assunption
of very large numbers (c/2mefif)S =n + y. This
permits the use of the method of stationary points
for the asymptotic evaluation of the integral. It is
found that the major contribution to J(k) cones,
first, from integration inthe vicinity of the peaks inthe
extremum point of S (£, p ), for E"'= Lk - i.e.
the point at which dS(E, P, )/ap =0 —and
second, from integration in the Vicinity of the
region of integration: £ "= E, S(E, pz) =0. As
regards the integration about the stationary point,
this yields the oscillating part of J (k) (cf.
Appendix), corresponding to the oscillating part of
the magnetic moment. Integration about the peak
E'=E, SE, pz) =0, yields the nonperiodic part
of J(k ), which determines the diamagnetism of the
electron gas. The neighborhood of S(£, p,) =0
however, corresponds to small values of the
quantum number n [ cf. Eq. (1.5) ], for which the
energy levels calculated in the quasi-classical
approximation (Section 1) are, generally speaking,
incorrect. Therefore the nonperiodic part of
J(k), an expression for which is given in the
Appendix, can give the correct figure for the
dianiagnetism of the electron gas only in the
special case for which the quasi-classical energy
levels coincide with the true levels for all n (for
instance, in the case of a quadratic dispersion
law).

The first term in the asymptotic expansion of the
inner double integral about the stationary point
leads to the following expression for J (k):

I == eﬁ”)"’ﬁj

X exp {—Qﬁkm:{:i%— z—%}

(2.13)

0*S(E, p,)

0;13

% exp {i 2 Su (E)}.

__I,

édEf(

m
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We have represented by S ,(£) the extremal value
of S (E, Pz) for constant £. If Sm(E) represents a
maximum for the intercepted area, then the phase
in/ 4 takes the minus sign in (2.13), while if

S ,(E) is a minimum area, the phase in/4 takes the
plus sign. The derivative (82§/8pz)m is taken at
the extremal point.

To compute the integral in equation (2.13) we
make use of the fact that, under the assumption
that dS_ (E)/dE # 0, and for the evident
inequality ® < ¢, the major contribution to the
integral comes from the integration about the point
at which the function f[(E ~€) /& ] varies
most rapidly; i.e., about £ = € . Therefore,
expanding S, (E) in powers of E — € and integrating,
we obtain

¢ E—c\| 0°S |—'/s
bid ke
ot i Sy (
~ 2 ‘F(k;)expﬁ l/l LR m s)}, (2.14)
"dS,, (c) | de
/’z m

where ¥ (z) = z sinhz, and A = (wc®/eBH)
X (dSm(e)/de ).

Inserting the expression (2.14) into (2.13), we
obtain:

J(k) = — e \ehH)

. \F(kx)exp{z i m(s)+tz——2nkw}
0°S (e, pz)/dpz *dS,, (e) | de

(2.15)

X

ks/ 3

We compute the second term in the curly
brackets of (2.3) by summing over &:

%Re ' J (k)
gl (2.16)
92 ehH\'/ IOZS (s, p,) = dSm (e)}—l
= V21r ( ) de

Sm(e) x% — 2nky .

XZ

k=1

—- ¥ () cos [ 35

In sumniing over the two spin orientations it is
possible, in all of the expressions in (2.16) except
the argument of the cosine, simply to replace € by
¢. In the argument of the cosine, however, it is
necessary to expand Sm(E) in powers of ;LOH,

LIFSHITZ AND A.

M..KOSEVICH

stopping with the first power of p //:

ds,, (C)

S () = S () 2 ol 22

Taking this into account in the summation, we
obtain as the final expression for the osc1llat1ng
part of the thermodynamic potential Q, correspond-
ing to the second term in the curly brackets of

(2.3):

v ehH\'T2| 328 |7Vs (dSp, \T2
&= n2V 2n 'h3( —'3—) dpz ( ra > (2.17)
>
X 2 LELO P [ew Sm(0)F o — 2= k*r}
Y] dSm(C)
X COs [270 TJ'

In order to determine that part of the magnetic
moment which is contributed by (2.17) we niust
differentiate 2,
intensity. In this differentiation the factors pre-
ceding the cosine, which vary slowly with //, need
not be differentiated at all; it is necessary only
to differentiate the cosine, whose argument depends
upon H. We have, therefore, for the component of
the moment in the direction of the magnetic field*:

with respect to the magnetic field

Vo eyl w{OVH
Mvsc=_n2VzT:h3(?) ;asmpz 'ads, | dt
X 2 ‘I"'(k?) (2.18)
X sin [ Sm(DF 4 — 27rk'r]
[ £ dS, )
x co 2m0 dg :l

Combining (2.8) and (2.17) as well as (2.11) and
(2.18), and taking into consideration the diamagnet-
ism of the electron gas, we write the final express-
ions for the thermodynamic potential  and the
magnetic moment:

1
Q=— 41r3h3 W) — V5 +x) A2 (2.19)

* Throughout what follows, the values given are those
of the component M of the momentum in the direction
of H. The corresponding oscillating component #  of the
momentum in the perpendicular direction is obtained by

multiplying (2.18) by (l/Sm)(aSm/a 4) (9being the

angle in the x -z plane).
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14 (g_hﬁ *2) 928
w2V 2 b3 /apg

—2 ( dSm )—’
c m atg
-~}

¥ (R)) ke
X Z p'lz cos [ehH Sm(®)

k=1

-+ % — 2'n-.k'r] cos [—2%0 —di’(’i’cﬁl];

M=V(p+y)H (2.20)

g (7).

o ¥ . k
x N Stsin [z Sn (0
h==1

S, (OVH
S (L, p,)/ op |1 aS,, (¢) 1 ¢

g dS, ()
F 2ok cos g~

Here y . represents the spin paramagnetic
susceptibility of the electron gas, determined from
(2.11), and x, is the constant part of the diamag-
netic susceptibility (cf. Appendix).

We may remark that the nonperiodic part of the
magnetic moment [ the first two terms in (2.20) ]
is of little interest, inasmuch as it is obscured in
metals by other effects (for example, by the atomniic
magnetism). The oscillating part of the magnetic
moment, to the analysis of which we now turn, is
of primary interest.

3. ANALYSIS OF RESULTS

From the formula for the magnetic moment (2.20)
it can be seen that the an:plitude and period of the
oscillations in the magnetic monient are fully
determined by the extremal value of the area on the
Fermi boundary surface intercepted by the plane
Px }{zconst., and by the derivatives of the area
int€rcepted on the Ferni surface at the extremal
point.

For a quadratic dispersion law

1
6=7,,7(Pi+ﬁj’,+p§)- (3.1)
we have

S(E, p,) = 2=m (E — (p3/2m));

Sp(E) = 2:mE, dSm(E)]dE =2=m,

|02S [ opz| = 2m; 1 ="/

In this case the expression (2.2) goes over into
the usual formula for the magnetic moment of a gas
of free electrons?.

For a temperatwe of absolute zero or for very
strong magnetic fields, in which case A <1, the
function W (k A) may be replaced in (2.20) by unity;
then the oscillating part of the magnetic moment
is given by the formula:

4V et \'l2

Mosc = — W<T) 3.2)
S, (QVH

X ese pyront [ as, @1
1 k -
ng 5 sin [——e‘hj-l Sn (C)-{—l[:-
g dS, )
— 2wk~(] cos [Zmo —ar ]

For small fields,A > 1 and W(kA) = Zk)te'k)\, and

therefore only one term (for &k = 1) of the summation
in expression (2.20) need be taken, which yields

(3.3)

Moee = — A(H, 0 sin [szﬁ Sn(OF 5 — zm],

where

AH, ) = -,r:—("‘z‘:—),—(%*)'

0S,, (¥)e™> [ 1 dS, (C)]

———— COS | 5— ———|.
X s pyrop VH 2my  d%

Since we used the thermodynamic potential I in
calculating the magnetic monent, ¢ and // must in
consequence be regarded as independent variables.
In actual applications of [£gs. (2.20), (3.2), and
(3.3), however, one must take into consideration
the dependence of { upon /, determined by the
constancy of the number of particles N:

N = —0Q(, H)] 0% = const.

This dependence is, however, sufficiently weak
that it may be neglected. It is easy to convince
oneself of this by evaluating the part of { which
depends upon the magnetic lield. The expression
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for Q(£, H) is given by formula (2.19); in
differentiating this with respect to { we retain, as
before, only the first few terms in the expansion
in powers of /. Then

v aw 3.4)
N= 4ok dg
% (ehH NE Vin
TR\ ) [eSsE ) el
® 1 . k
x S\ ¥ (k1) sin [ Sm (0)
k=1
=T o g dS, (%)
—+ Z 24»/2"{} COS [2—”1; T].

Under the assumptions we have made (8 < ¢),
dW({)/d¢ = U((); this is the volume in momentum
space enclosed by the Fermi boundary surface. If
we introduce this notation into formula (3.4), and
for simplicity designate the summation in the
second term of this formula by G({,H), we obtain

U{)=U(®)
(3.5)

(ehH )’h 2Vin G (¢ H)
¢S p) o)

where 40 is the chemical potential at # = 0.
Assuming a small increnent to ¢ dependent upon
the magnetic field //, we niay set

(=0 (1+8(H) L1

Expanding the quantities in (3.5) which depend
upon £ in powers of & and stopping after the first
few terms, we have

UGy = Uy + €¢, 0L

dg,

_ (ehH )'/'
c
whence it follows that

§(H)

2V 2% G (%, H)
|62S (%, p,)/ 02|

(3.6)
2Vom e H

_ G (%0, H)
G0 G/ d% \

)-/=
I 0*S (%o, p,)/ 0P

Y
m

Inasmuch as the summation G({, #) appearing in
(3.6) is of the order of unity, while |02S/8p§|yr’n is a

I. M. LIFSHITZ AND A. M. KOSEVICH

nondimensional quantity representing the aniso-
tropy of the Fermi boundary surface (for the case
of a spherical surface it is equal toy/27), the
quantity ¢ (/) is determined by the ratio

(et /c)?/2/ {(dUL,)/d¢ ). T the cases in which

the anisotropy of the Fermi surface is anomalously
large are neglected, then it is possible to assune
that U(CO) ~ [5(40) 13/2where S(éo) is the mean
area intercepted on the Fermi surface by the
planes p = const. This permits setting, in order
of magnitude

U s as 1'ls
Co %Eo—"’ U (o) ~[S %)l /'N{Co d_Co] ,

and we can write
E(H) 3.7

~ ( e?;H )'/-/ 2 dZCiCO) - ( egf diéfo) >’/2.

We note here that, as follows from (1.5), the
mean distance between neighboring energy levels
near the boundary energy is equal to

_ 2mehH | dS (%)
AE= c dgo .

The distance between the levels is assumed to
be considerably less than the boundary energy ¢ ;
from (3.7), therefore, we obtain the following

evaluation of & (H):

E(H)~(AE L) < 1. 3.8)

Thus, the quantity £(#), determined by the
expression (3.6), is actually small in magnitude.
For the case of the quadratic dispersion law (3.1)

__(ehH\'» G (¢, H)
HH) = () St

~(me) = () =0

As regards the argument of the sine in (2.20),
(3.2), or (3.3), its dependence upon the magnetic
field is incorporated in the expression

ds,, (%)
—]

2 S = 57 [Sn () +

= # Sm (%)

as,, (€,) (3.9
. 2Vox (ehH)'h G(t"'H)—?c_nL( )
I

W/ d \ e %S (%o, £,)/ 0%, |
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The second term in (3.9) is equal in order of
magnitude to (AE/ éo)y’ <« 1; the periodic depend-
ence of the magnetic moment upon the magnetic
field is therefare fully determined by the first term
in (3.9):

c

FaSnO=~ 57 S=(%) . (3.10)

It follows from (3.8) and (3.9) that { may be

replaced by ¢ in kigs. (2.19) and (2.20), as well
as in (3.2) and (3.3), and the period of the oscilla-
tions may be represented in the form

2reh

A(%):m ' (3.11)

In the event that there are several unfilled
zones, in which the classical motion of the
electron is independent — i.e., when the Fermi
surface is reduced to a few closed surfaces — each
group of electrons has its own Sm(E) and makes
its own oscillatory contribution to the magnetic
moment. If in this case the boundary energy ¢ is
found to be distributed about the lower part of the
unfilled zone, we may content ourselves with the
representation

2

Pz p? P2
& (Px, Py, pZ)ZSo‘i“(i”'l—l‘.L—.—JL +——>

The maximum area intercepted on the ellipsoid
8(Px, Py, Pz) = E by the plane P x H = const.
will be

S = 2em (E — <),
J— l/ 2 2 1
m = (mymyms)'* | (myod + myo + maad)/s
where the o . are the direction cosines of the magnetic

field vector H in the system of the crystallographic
axes. This yields for the corresponding factor

3Sm/aE = 27m and period
1 %
Af—)=_*_ __ en
(H) [ (P_— mc),

In the case of a nearly-filled zone the energy at
the upper boundary has the form

' P2 P2 P2
é(p.hpyy Pz)=30-—(-ﬂ+_y_+ )’

which yields
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.

0Sm|0E = — 2xm and A(—é—)z -+

so—C

¥ o=eh/m',

* L]
m" = (mimzmz)" | (mjad + myad; myd)'
In the presence of strong mass anisotropy even
a slightly mosaic structure leads to obscuration
or complete obliteration of the oscillations in the
event that the number of electrons in the
corresponding zone is large. This obscuration of

the phase of the oscillatory term may be
represented in the form

C—ep Am —eq
T~ A,

A(P =
where Ad is the angle of mosaicity. For Ad> 1
the oscillations disappear. Therefore, only those
groups of electrons or holes in which the number
of particles is extremely small will participate in
the effect. Oscillations having smaller periods
can appear only for sufficiently high fields. Since,
however, the curvature of the surface corresponding
to an anomalously small number of electrons is as
arule extremely high (anomalously small electronic
‘‘masses’’), even in this case there is no founda-
tion for assuming a quadratic dispersion law.

Thus, the occurrence of the experime ntally
observable De Haas-Van Alphen in a large group of
metals provides grounds for assuming that the
presence of zones having an anomalously small
number of electrons is a general property of
metals. It is possible that the appearance of these
zones is connected with interactions between the
electrons and the lattice. The discovery of an
isotopic effect might serve to confirm such a
supposition.

Finally we turn owr attention to the fact that
careful experimental measurement of the period of
the oscillations in the magnetic moment A (1 /H),
as well as of the aniplitude of the oscillations and
the temperature dependence, would permit the
reconstruction of the form of the Fermi boundary
surface, and would also permit the determination
of the velocity of the electrons upon this
surface — i.e., the problem may be solved in an
inverse sense, so to speak, to that in which we
have solved it. The feasibility of this procedure
is a consequence of the fact that the period of the
oscillations determines the extreme value

S,,(¢) of the area intercepted on the Ferm.i
boundary surface by the planes perpendicular to the
direction of the magnetic field, while the amplitude
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of the oscillations and the temperature dependence
determine dS, ({)/d¢ and |9%S (¢, p,)/ 8}2)z|m

has been demonstrated in a paper by Lifshitz and
Pogorelov®, a knowledge of these quantities, under
quite general assumptions, is adequate for the solution
of the inverse problem.

If it is assumed that the Fermi boundary surface
has a center of symmetry and that the extremal
intercept is the central one, then the length of the
radius vector r, extending from the center to the
surface in the direction e (e being the unit vector),
is determined by the formula®

1

w7 (@) = Xe (0) — | [Xe (1) — Xe (0)] 55
0
We have introduced here the representation

Xe(n)= o g [Sm (2)]nd (N — 1) dQ,

(3 12)

where [Sm((:)] is the area intercepted on the
boundary surface E(P P P)= ¢ by a plane
through the center normal to a glven unit vector n,
d(z) is the delta-function, and dQ; is the element
of solid angle in the direction n.

Having determined the form of the surface r (e),
and knowing the quantity dS_({)/d¢, one may

readily determine the veloc1ty of the electrons on
the boundary surface.

For the magnetic fields under which the measure-
ments of the De Haas-Van Alphen effect have been
conducted (H ~ 10% gauss) the periods observed
experimentally for the oscillations are determined,
as we have pointed out, by those zones having an
anomalously small nunber of electrons; for this
reason the method described above can be used to
reconstruct the Fermi boundary surface for these
zones alone. Measurements in considerably

stronger fields are needed before it will be possible
to draw any conclusions regarding the form of the

boundary swface for the normal energy zones.
APPENDIX

We shall evaluate the integral

1= amap, S Ero.

X exp{ h/]S(E’ pz) — zk*,'i}

in which the region of integration is bounded
by the straight line £ "= E and the curve

61. Lifshitz, and A. Pogorelov, Dokl. Akad. Nauk
SSSR 96, 1 143 (1954).
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S, pz) = 0. We shall not specify the extremely
weak dependence of y on E“and p .
Assuming that dS(£ pz)/aE "+ 0, we may

conclude that the primary contribution to/ is
provided by integration in the neighborhood of the
point on the boundary of the region of integration
E’=E for which dS(E, p )/dp,=0, in the vicinity
of the point E“=p_ =0, for which ds(0, p,) /dp, =0,
and about the ppaks of the region of miggldhop'l
1) In integrating about the stationary pomt on

the straight line £'=E we expand S(£ p, )in a
power series in (E°~E) and (p, - p,,) (pm

corresponding to the stationary pomt) stopping
after the first nonvanishing terms:

oS (E, pm .
[1 = OF 11 S(C» pm)_Q"Tle}
E P td
. kR ' S
X S dE S dpz exp {l ﬁ_] [(E -— I-}‘) O—E
E>o 0

+ = (p:— Pl -~—}

Opz
After further computation we obtain

el H\%/, Vir . ke
h~(%) TS O li 2 S(E, pn)

. L, . . T
——Q’Rkl"{—l '2——{--1-/;'}

The sign of the last term in the exponent agrees
with the sign of 3%S(E, pm)/aprzn.

In computing the integral we have made use of
the following asymptotic formula:

§ F(oexp (40w (x — xp) dx

Xo

T'n+1)
an Wt

exp{i—ingin} (W>=>1),

assuming that in the neighborhood of x = x, the

function f (x) has the form f(x) = f (x - x)".

The expression obtained for I, determines the
oscillatory part of J(k); if it is inserted into equa-
tion (2.12), setting S, (E) =S (E, p,,) , the latter
will yield (2.13).

2) Designating by fp the values of p,_
corresponding to the peaks in the region of

integration,we investigate the integral in the

(17,] Corput. Proc. Acad. Sci. (Amsterdam) 51, 650
948
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vicinity of one of the peaks

Do E
S (E, ; '
12~_(6bl)0) T g ap ’&dE
Pi—0

X exp‘{ie—l—;%l[(,l’z“ﬂo)ad_pso‘ + (E’_E)g_i‘—]}

The lower limit of the integral over £ “lies on
the curve S(E pz) = 0. Near the peak it is
possible to make the substitution

_ [0S [0S\
=E+(o—p) 5 | 5F)

With substitution of variables we have

e—2nh1 Y

eh H\2 —ix v —i
12~<7?c‘) aS(E,powdpogdxe S dye=
0

0

Computing the integral using the above formula
we obtain:

Iy~

th>2 sin 2wky — cos 2-:ky

\ ke 0S (E, po)/ 02, I+ ia)

where a is some real quantity; its value is not
important, since we shall be interested only in the
real part of /.

Inserting /, into (2.12) we obtain the correspond-
ing contribution to the real part of J(k):

Re {J (k)}
s) dE

E—
__ €hH sin 2mky — cos 2mky g cf <—
¢ 2mie? 9S (E,po) / 6p0

Noting that the region of integration has two
symmetrical peaks, we write the expression for

that part of the thermodynamic potential Q and the
magnetic moment # which is determined by the
quantity 12 in the form:

645

. 1 fehH\2 1 O sin 2rky — cos 2k
Q'“—VF<T>F}_‘J o
k=1
- —t\ 45 (P.1)
x )
p 0S(E,p) 0P, (bpo)/apo
> sin 2nky — cos 2mky
M= V,cs WHZ 7 (P.2)
=1
o (Egc)dﬁ
X

OS (br Po) / 0/70

S~

These expressions describe the constant part of
the diamagnetism of the electron gas. In the case
of the quadratic dispersion law (3.1)dS(E, Pz)/%p,
= - 2m/2mE and (P.2) goes over into the
familiar Landau formula.

In the general case, however, our formulas for
the constant part of the diamagnetic susceptibility
may turn out to be incorrect, since it is impossible
to use the quasi-classical energy levels in the
vicinity of S(E,p) =0. The diamagnetic
susceptibilityof the electron gas is determined by the
electrons near the Fermi boundary surface®, while
the expressions(P.1) and(P.2) are determined by
all of the electrons together.

3). One can readily convince oneself that
integration about the point £ "= p,= 0 yields a
a contribution to the real part of / which is small
in comparison with the real parts of /| and /,; we

shall not, therefore, investigate it.

8 R. Peierls . Physik. 80, 763 (1933); A. Wilson,
Quantum Theory of Metals.

Translated by S. D. Elliot
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