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The differential cross section for the (d, p ) reaction on a heavy nucleus is calculated for
the case where the effect of the Coulomb field is fundamental in determining the angular
distribution. The differential cross section over the region of large angles increases with
increasing angle, while the behavior of the cross section is weakly defendent on the angular

momentum [, of the state into which the neutron is captured. The tota

cross section is

determined and the factor multiplying the exponential is estimated.

A T the present time, the (d, p) reaction has
been studied in detail mainly on light nuclei,
where the effect of the Coulomb field of the nu-
cleus is not very important. In this case, the pro-
tons which are formed emerge mainly in the forward
direction and their angular distribution depends
strongly on the angular momentum ln of the state
into which the neutron is captured. These experi-
mental data are in good agreement with a formula
proposed by Butler"; however, it is still not

clear why this agreement occurs, since the ap-
proximations used by Butler actually correspond
to the Born approximation?, whose applicability to
the calculation of the (d, p) reaction has no basis
whatever.

We shall consider a different case of the (d, p)
reaction—-on heavy nuclei, for low energy E , of
the incident deuterons (£, < Zez/Ro ), where the
effect of the Coulomb field of the nucleus is the
main factor in determining the angular distribution.
In this case the protons from the (d, p) reaction
emerge mainly backward, and their angular dis-
tribution depends weakly on ln_ In our case, the
whole calculation can be made consistently on the
basis of the methods of perturbation theory, which
is known to be applicable for large Z and small
E ;. because of the smallness of the matrix ele-
ments containing the Coulomb wave functions in
the repulsive field.

The total cross section for the (d, p) reaction
on heavy nuclei (i.e., the Oppenheimer-Phillips
process ) was calculated by perturbation methods

ls T, Butler, Proc. Roy. Soc. (London) 2084, 559
(1951).

2 E, Gerjuoy, Phys. Rev. 91, 645 (1953).

in a whole series of older papers®~%:7, whose
authors limited their considerations to just the
spherically symmetric part of the functions

l//kd (r) and ',//k(;)(r), describing the motion (in the

field of the nucleus) of the incident deuterons
and emerging protons, with momenta 7k, and
'hkp at infinity. To calculate the angular dis-
tribution, it is necessary to consider all terms in

the expansion of these functions in sgherical
waves. This is the basic difference between our

calculations and those of Lifshitz”.

1. THE AMPLITUDE FOR THE (d, p) REACTION
The exact value f__of the amplitude for the re-

action d + A > B + p is given by the formula

for == EMOER, 45" () 1Vep O

+ V},]‘i’éf,") (R, Tn,r,)dRdr.dr,

(the derivation of this formula by the usual methods
is given in an Appendix at the end of the paper).

T _ . . .

Pere Vip = Vnp(ltn -r, ) is the interaction energy
of a neutron and a proton whose coordinates are
r,andr, Vo=V (r,R)- Ze2/rp is the energy
of interaction of the proton with the nucleons of

3
J. R. Oppenheimer and M. Ph“ Ph R 4
500 (1935). illips, Phys. Rev. 48,

* H. A. Bethe, Phys. Rev. 53, 39 (1938).

SP.L. Kapur, Proc. Roy. Soc. (London) 163A, 553
(1937).

6 G. M. Volkoff, Phys. Rev. 57, 866 (1940).

7
E. M. Lifshitz, J. Exper. Theoret. Phys. USSR 8,
930 (1938).
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(D,P) REACTION ON HEAVY NUCLEI 621

nucleus A minus the Coulomb energy, R represents
the collection of coordinates of the nucleons of
nucleus 4, at whose center of mass the origin is
located, ¥, is the wave function of the final
nucleus B, l/lk(;) (rp) is the Coulomb wave func-
tion describing the motion of the proton; as
Ty it reduces to a sum of an incident plane
wave (corresponding to the momentum %k ) and

an outgoing spherical wave*. ‘I’(:")denotes the
exact wave function of the system; to go over from
the exact formula (1) to the formula given by the
first approximation of perturbation theory, we re-
place it by the “incident’’ wave, i.e., by

W4 (R) oiy (T, 0);-

=1(th+1p), p=1tn—T1p.

Here ¥ is the eigenfunction of the nucleus 4,
while B, describes the motion of the deuteron in

the pure Coulomb field Ze2 /Ty

h? o Ze?
— 7 Vr + "“'—_.]
{[ iM |r—101

+[—E v+ Vir )]
—(Esa— sd)} oy (T, ) =0,

with momentum #k; at infinity (E, =#2k2/4 M,

€; = 2.23 mev is the binding energy of the deuteron).

Replacing ‘I’ézx) by ¥, Py and neglecting in (1)

the potential Vx;’ which differs from zero only for

r, < R, --in the interior of the nucleus A, where
) . 7

l/lkp and q , are exponentially small (if Z is

large and E, small), we obtain f, - f,, where

12M * e —)*
fi=— g | O+ Yag) 4 @

 (F —30) Vip () iy (T, p) dr dp.

* We always normalize the wave functions of the
continuous spectrum to unit amplitude at infinity.

The function

O, () = g\m (R)¥5 (R, 1) dR 3)

is the wave function of the neutron in the final

state. This same value of f; can be obtained by

the standard methods of perturbation theory as the

matrix element for the transition between the non-
(-)

orthogonal states ‘I’Acpkd and Wp 7).

In the region of values of r and r_greater than
2 p n ©

R, which is the important region in the integrals
(1% and (2), ‘PL‘;")is a sum of an ““incident’’ wave

‘PAcpkd and various scattered waves ( caused

solely by nuclear interaction*), whose amplitude
decreases exponentially with increasing Z and
decreasing E ;. Therefore, the difference f__—f,

is smaller [i.e., Fq. (2) is more exact ] and the per-
turbation series converges the more rapidly, the
larger Z becomes and the smaller E .

We express (2) in a form suitable for computation.
The_regions which are important in the integral
(2) are r > RO’ and small values pP<ry, where To

is the range of the potential V i.e., the import-
ant region is /% p <r (r, is always much smaller
than R ). In this region the variables r and p in
the equation for Py, are separable, and its solu-

tion to terms of order (p/2r)? < (ro/QRO)2 has
the simple form: ¢, , =~ ¢, (p) ',bkd (r), where ¢,

is the internal wave function of the deuteron:

E-'dxd i —%

o — e e d® for To,
Py = o pe 9>0

(ky = (Med)l/’/'h', fd ~ 3% is a correction factor for

normalization) and "Z,kd is the solution of the
equation

<—Z’_T:4V2+g§2-_Ed)q)kd=0’

* The scattering of the deuteron in the Coulomb
field is already taken into account in the ‘‘incident”’

W . .. .
wave }A By’ for this reason the word “‘incident’’ is

given in quotation marks.



622 K. A.
which, for r » =, goes over into a sum of plane and
spherical outgoing waves. In other words, in the
region of small p/2r, which is important in the in-
tegral (2), the polarization of the deuteron by the
Coulomb field is unimportant*. Substituting this
value of P, in (2), and setting (/1( ) (r -%p)

= /( -) (r) @ (r+%p)= (), whlch are correct
up to terms in the squares of the quantities k,rg /2
and Kk ro/2(x = (2U|E % /4, | E_|is the

neutron binding energy in nucleus B), which are
small compared to unity *}we obtain

(4)

fi=2V 2500 )45 0 gy ar,

since

1 oM ¢ £t
_4_7‘?& Vip (p) 2a (9) dp = P

A formula completely analogous to (4) was ob-
tained by I.andau and L.ifshitz®, in considering the
(d, np) reaction (breakup of the deuteron in the
field of the nucleus). In this reaction the final

* In papers 3-6 the amplitude (2) was written in the
form

Y )V (, RE 4 (R) @ (F, 6) dr,, dr,,

S0 that the 1m ortant reglons in the integral are

. o L& , P/ 2=r. In this region we have

to take inlo account the deformation of ¢4 under the

influence of the Coulomb field, and cpkd has a very

complicated structure; the authors of the papers cited

limited themselves to the setting up of the spherically
tri t of .

symmetric part o Cpkd

** The lm(’ar terms in the expansions of lﬂ( )(r - /,p)

and(f) (r=

?p) in powers of p vanish

when we integrate over the dlrectlon of p in (2). The
quadratic terms are small: (k r /2) ~E, (mev )/40,

(k,ro/2)2~ E_(mev)/40.

8 L. D. Landau and E. M. Lifshitz, J. Exper. Theoret.
Phys. USSR 18, 750 (1948).
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state of the neutron is a state of free motion, so
that ¥, can be represented approximately® in the
dk"
ikpr,
form ¥, (2m3 €7, ie.

(Dn(rn) is a plane wave ~ e

, according to (3)
tknt, (if we do not

take into account the change of the neutron wave
function under the action of the nuclear force field,
which is actually not small).

2. THE NEUTRON WAVE FUNCTION ‘Dn (e)

In the region r > R ), which is important in (4),
the function @ (r) of Fq. (3) satisfies the equation:

—_— (h2/2M) V2(I)n = Enq)m

where En = WB - WA

neutron in nucleus B (W5 and W, are the energies

is the binding energy of the

of nuclei B and 4), and in accordance with the
transformation properties of ¥, and ¥, under ro-

tation and inversion of the coordinate axes, has
the form:

@n (r’ En) (5)
Jat/s j u
BMpB inkn
= 2 JAMAjn}"n Z C-’n"'u LympXsp
in=lJa—/B1 Op=1'ls

X 0, En) @j,1,m, (1),

v, (¢, 7 s
q)jn lampy (r) = 'q]n ln —.—;— e " Ylnmn (Sf‘?)’

I (1,49 g

n = V!(ln—")!’(qur)_‘"
v=0

U

[From now on we write @ (r) as o (r, fn ), i.e., we
include the neutron spin variable.] Here TMy,
JgMy are the angular momenta of nuclei 4 and B,
Joby» Lm, and s, = Y, o, are the cuantum numbers

of the total orbltal and spin angular momenta of

the neutron (for given j , [ is Jo+torj =Y, de-
pending on the parity of ¥, and ¥g), CF
71p1i2p2
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are the Clebsch-Gordon coefficients, x Lo is the
spin function of the neutron, K, = (2M|E I's%/ﬁ
for E, <0 and K, =—ik =- L(?{"[En)%/'h for

E, >0. o,
structure of the nucleus. It can be estimated most
simply as follows. e first consider those levels
of nucleus B for which the neutron energy E_ is
positive. If the function (5) is properly normal-

ized (in accordance with the normalization of ‘I’B
l2

in (5) is a constant depending on the

so that the integral of | W |* over the interior of
the nucleus is unity ) the total radial flux of neu-
trons is

hk, 1 \
T S (0 edo

MyMp

kk

n
= 2y, Matal?

and is equal to the neutron width I /#
=X T., /#. Thus,
In Jntn

I"li,, I, [P = (M/R*k,) T,

We know? that

an Iy

= 2kaR0| V1, (— ikaR) €% |2 (= fin1, (W)™,

where the function in the square brackets depends
on the nuclear structure (W is the energy of
nucleus B). In order to estimate it, we consider

. ., 1/ 9,10
the special case j =72, [ =0, when Uy
=(1/27) (En/Eo)l/é Dl/z 0( WB ), where D is the
level spacing and £ = 0.7 mev. Comparing this
value with the general expression given above, and
setting®/ / QMEO = f% O/ K, [ where f% o

1

= (ed/ ZEO) ? =

we have:

1.251 for convenience in writing,

° H. Feshbach, D. R. Peaslee and V. F. Weisskopf,
Phys Rev. 71, 145 (1947).

A I. Akhiezer and 1. la. Pomeranchuk, Some Prob-
lems of Nuclear Theory, GITTL., 1950.

623
[— o (Wp)] 7 = 20
— fio (W)= /;;;Dl/.o(WB)-
We keep this same estimate for ln # 0, setting
’ -1 E]n l
(= Fita (Wl = 7222 D1, (W),
where f is a constant of the order of unity.
Then ™"
Pln Iy (63)
k”E"n Iy
= Zﬂxd l 'U[n ('— iknRu) exp {iknRU} Ia )nln (WB),
l drf 11_51'1 lnxd
l”l‘ tn V-Ze:dz: in
Jn Iy ( B)
XU vy, (— ikaRy) exp {ikaRo} | e

Thus, the condition that the integral of | ¥, 12
over the interior of the nucleus be equal to unity

determines l77;’,,ln |2 as an analytic function of the

neutron energy E . The form of this function does

not change when we go from levels of nucleus B
with £ >0 to levels with £ <0; when this is
done we must write x_ in place of -ik, on the
right-hand side of (6a)*

€i 1,%d

[ M1, P = —5 (6b)

Dj 1, (Wp)

| Ui, (xflRO) €xp {“ ano} 1—2 .

Formulas (5)-(6) completely determine Ul (r) over
the region which is important in the mtegral (4).

* This same value (6b) can be gotten directly from

the condition that the integral of )‘PB [2 over the in-

terior of the nucleus be equal to unity. We emphasize
once more that the constants K; and €, of the theory of

the deuteron are introduced here only for convenience
in writing the formulas.
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3. THE DIFFERENTIAL CROSS SECTION

Since the spin of the neutron was included in (5)
-to make our formulas precise, we shall give the
expression (4) for the amplitude including the
spins of all the particles:

fi= V‘ e V(@5 (1, 5 95" (1) 50, ()

‘Pkd (r) Xsdod (&nEp))dr,

where Xs, and Xsq04 &€ the spin functions of
the proton and deuteron (s =%, sy = 1). Sub-

stituting @ from (5), we express the differential
cross section for the (d, p) reaction

1
dc = G 2 2 dQ ’
(2Sd + 1) (ZIA + 1) Mgoy. MB“p Ifl ,
1V, 2k,
n=7%)
in the form
2341 (N
do = 2@, +1) zfn Bjuty
in 2
(1) p .
dc]n In 2[ + 1 2 |fnmn (3P) IZ Td- dQP:
my=—l,
28 %y (8)
f(;nzn ('sp) = V 7 Nintn
x 0, (xar) €707 ¥ (99) 427" (6) iy (£) 2
l n lymy, ¢ kg r
Fere we have made use of the facts that
2 l > AUn, (Xsnchspcp, X_sdod) P= < 2 I Ao,,l 2
0p04 Op
2’ c’BMs JpMp 2Jp+1
JAMA’jP' ! =571 JJ;
(MB_MA=P'n) nen JAMA' Intn Zjn + 1 nin
' j j 27, +1
2 C]nl"n ~abn — n ~ ,
(b0 ) S$pOp» l,lmn_(asno”. lymy, 2[n 1 0 1,1,
The A, are arbitrary quantities: X
" (M= =m,)
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denotes summation over all values of p and o for
which p, ~o =m_ , where m_is fixed. We note

that formulas (7)-(8) correspond to the formulas of
Rutler.

We omit from the integral (8) the region of in-
tegration r < R ), which is unimportant in the case
we are considering, and set:

o 254”4 (8a)

n’”n

<

(r>Ry)

Jn Lymy (r) 4’ (r) q)kd (l') dr.

For large Z, (8a) practically coincides with (8); on
the other hand, if we formally set Z = 0 in (8a), so

that ¢ ’(')* Uy =explilk, - k) ) - r}, then (8a) and
(5) give li}utler’s result:

(1) Ed_}%- 47rilnR(2) Y;n”’n(sqq)a)

lpm, = “on MNinln

%+ (k) — kg)?

d (Y1, (x,n) ey
< |Guutgr) g (25 )

dG,n (gr) v, (,,7) e r]
—_—— ,
dr r r—=R,

where q %kd - kp | Gl,,(x) = v/ 2x ]ln i’;é), Jln+l/2
is a Ressel function.

Thus (8a) is an interpolation formula, correct
for large Z and reducing to Bulter’s formula in the
limit Z - 0. In the following we shall limit our-
selves to the case of large Z and shall use (8)
rather than (8a), with the value of @ given by
(5) even for r < R, since it is more convenient to
calculate the lntegral over the whole space. Thus

the results which we shall obtain do not reduce to
Rutler’s for Z - 0.

4. ANGULAR DISTRIBUTION

In the quasiclassical case which we are con-
sidering, when Z is large and £, small, and

oy =Ze2/'flvd > o, =Zel/# v, > 1 (vp
=v 2Ep/M’ vy =VE /M), the angular distribution

and the variation of the cross section with energy
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In fact, in this case the

depend weakly on [ .

factor

e—-un'qj.)g(_p). (l') q)kd (l')
= exp {—— Rl + In [(Pkp l?kd]}

in the integral (8) varies exponentially as a func-
tion of r.

The value of the integral of such a rapidly vary-
ing function is determined by its value in the
neighborhood of the saddle pointr (r, 9., ¢; ), at

which F(r) ==« r +1In [l/l(;)*l/‘lkd]
Therefore, the slowly varyinpg spherical functions in
(8) canbe evaluatedat § = ¢ 1 and ¢= G and removed from
the integral; if* « r; > ln(ln +1)/2 then the func-

tion v, = 1+ ln(ln + 1)/ 2Knr + .

maining integral can be replaced by its asymptotic
value v; ~1. This gives
n

(1)

lpymy

is an extremum.

in the re-

9

=V Zaa/w0s, 1, VAV 1ym, (B, 2 Lo (),
1 oA B
o ®p) = = {0 (1) ey (1)
Substituting f;(ll)m in (7) and using the fact that
4n

1
2l +1 5:1 |y, . (8, cpl)|2= 1, we get
n

* This condition is almost always fulfilled if l is

not very large and |E | is not very small. For an
estimate, we can use the value r1 = Ze*/[E; + (VZ 1 E, |
— V-E;)’!], which was gotten7 in calculating an integral

of the type of (9) by the saddle-point method. Then

Ve, | E, |

x,t = 0,15Z — =
n E,+ (V2IE,1—Vepp

(015__7: M)

which, for heavy nuclei, gives a value of about ten for

K
a1
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dsj1, = a1\, (3,,)| PdQ (10)

Here a. | denotes a dimensmnless constant,

inde_pende'tlltnof d, and E, and equal, according
to (6a, b), to:

2
aln 2Ed|"1,:1 ‘ (11)
d
( ng an Iy
! s Ex>0
I Edﬁjnln D]-nln(WvB) exp {2x,R} F 0
| elo, R <O

Thus only the absolute value of the cross section
depends on [ , and not its variation with angle
and energy.

After substituting in (9) the exact values of the
Coulomb functions:

dl)kd = VQ'.TOLd exp {— mag + ikdor} F(— i“d’

1, £ (kar —k,-x),
V=V 2ra, exp {— na, —ikp.r } F(— iop,

l’ l(kpr+kp'l'))

the integral can be computed exactly ( similar in-
tegrals were evaluated by Sommerfeld 1*:12). The
details are given in the Appendix, where it is shown
that

.lﬂ jo
1, (9,) = 4V oo, i
(kg —kp)* + %,

exp {— = (xa + %p)}

]iad

(xn—-ikp)2+k3 3p F(— ia,, —iny, 1, —Y)
..+(kd__kp)2 147 )

| (¢, — ikg)* + k5
X | 2+ (ky—kp)?

The argument ( of the hypergeometric function de-
pends on the angle 3 between k; and k,:

11y, Sommerfeld, Atombau und Spectrallinien IIB.,
Braunschwelg, 1939.

2 A Sommerfeld, Ann. d. Physik 11, 257 (1931).
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. , L"’“d
L=0sin?(9,/2); Ly=—"F
(kd——/.«‘ i~

AV2E (E 4+ Q)

where QzEp ~E,=-E - ¢, isthe Qof the re-
action. For En <0, «_ is real, so that the

quantities in square brackets in /,( 19p) are
complex:

(% — ika)® + K = — (ki — 2 — k2)
— Qikgun = cie” T |
(en — k) + kG = (ki + %5 — k)

— 2ikpxy = coe” %P

where ¢, and c, are the moduli of the complex

quantities, and the phases are determined ( for
En <0) by the equations:

tro — 2.k W2E,|E, (122)
g'd—kg-—k;—xi— Ey+eg—21E,]"
0<“?d<ﬁ’
tgo = 2.k,  2V|E,(E,+ Q)
r kz — Iei—{—xi - E,+ €4 ’
3
0<‘?,,< o

According to (12a), the angles ¢, and ¥, go to

zero for | E_ | -0, and obviously remain equal to
zero for any E >0, when k=~ ik_is a pure
imaginary number:

E, >0, ¢,=09,=0. (12b)

We can therefore write, for E >0Cand E_ <O0:

“o(‘(}p)l=

4V a%p

ot o XA (rapa — %52p)}
a P ”

x | €TPF (i, in,, 1,— )
T+¢

(V2 —VE g+ QP +1L,

’

K. A. TER-MARTIROSIAN

or, according to (10):

2.,2
8nx e,

dﬂjz =aj, 1
n'n Inln [(kd_kp)z_*_x,?lz

(13)
X exp {— 2 (2apa — %%p)} N (C) 4y,

where the function

e "*PF (iay, ia,, 1, —%)
1+¢

N(Q) = 2ray (14)

determines the dependence of the cross section on
3, In the case we are considering, when

oy > L oor a, > 1, the hypergeometric function has
the following asymptotic value:

| F (ing, g 1, —O)J? (15)

N 14+¢ exp{zna,, + 2 (o, — “p¢p)}
 omagt V{&e/D) — (1 — p)? '

the derivation of which is given in the Appendix.
The angles 7, and t,/Jp are defined by the equations

(11— 2
o= 0SS (19
1—p)g—2 (16a)
cos %:___(_i;‘%_r_gp_’ 0L, 0

where p = ap/ oy = /td/2kp = (Ed/2Ep )4. The
equality (15) is valid for not too small {~roughly
speaking, until {~ 1/ a ,; more precisely, for

€> C', where

& . C(a, a
1—_;271/(4%%/()'—(% — «p)* = min {;i, a_(;}

(cf. the Appendix). If - 0, then |F(iad, ionp,
1, - /(1+ ] L Therefore:
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NE= STV = ( =o' exp 2 (eaba—opty)), i TS0 an

2rag exp {— 2nap}, if (=0,

or

N (%) = exp {aaL, (0)} | M, (0), (18)

where

Lo (©) = 2 (ba—"0Pp), Lo (0) =—2mp,

Mo (Q)=C(1+0)V (4p/0)— (1 —p)*

Mp (O) = 1/27!“4.

Graphs of the functions LP(Q and MP(O are
shown in Fig. 1.As we see from the figure, LP(C)

increases with increasing {[reaching zero for
¢=4p/(1-p)?, while ¢y <4p/(1- p)? through-
out]. This increase causes an exponential in-
crease in N (), i.e., in the cross section, with
increasing 19p.

g M) 2
' | — ;’07 T
P [ —— "] ——
| ——] 058
e — o
" — 4//::: - \\
. 72— 0\
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=
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\oh

D
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2
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~

v n

=
N
O
S

Fic. 1

The function N (¢) is a maximum for §, =,
{= ¢y for small 7 — d,, its dependence on

m — ¢ _ is approximately a Gaussian. This can be
seen Ey expanding L () in series in powers of

{o—¢=¢, cos? ( 17p/2)z Co(ﬂ—op)z/él:
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Lo Q)= Lo (%)— O+---

xy C
kp(i'*‘Co)( o

V(4p/C) — (1 —p)?
14% ’

(since (dd[” )C

T . o
= — (I1—p)P= '7%] ) and neglecting

the change of the factor ¥ (£) outside of the ex-
ponential in (18). We then get:

N ()= Aexp {— (= —9,)%7%,

T—3, L1,

1 o‘d.Q ,
ijiééé:

TER-MARTIROSIAN

_ Ve + Vt,,+o>2+o+ed
Bey

=YL -

The width & of the angular distribution is smaller,
the larger Z and the smaller £, and the higher the
nuclear level into which the neutron is captured
(i.e., the smaller Q). This conclusion also fol-
lows from consideration of the angular distribution
curves of Fig. 2 for various cases (the curves are
drawn on a logarithmic scale ).

0.15 Z.

2=60

1. 1 1 1

. /
z0°

J0° 150°

Fi16. 2. 1—E,= —2,
3—E, "1, 4—E =0, 5—E, = —2,

mev ;

e g9°  wo°
2— Ep=—4, E=2

E—4 mev 6— E, =0, E =6 mev 7—En—

=0, 8—E, =—2,

mev §

10—E, =0,

9—E,=—4 E=4
11— E,=—2,

12— E,=—4E=6 mev

5. TOTAL CROSS SECTION

In order to calculate the total cross section, we
integrate (13) over 3,5 noting that de

=(4n/ éo )d {, we get the integral:

SN(C)dQ —g
AL
P ca+op L F— -

exp {ocd

i
%
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in which, because of the decrease of Lp(é) with
increasing {,, ~ {, the valuesof { near to éo are
important.

Therefore, as before, we expand LP(C)

in powers of x = { ) — {'and extend the x integration
to infinity. This gives

\V@a,

%y kg

[@‘;'i)——] exp {aL o (Co)}

(the factor in front of the exponential was taken
outside the integral and evaluated at ¢ = &)
According to (13) we then have:
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3].11 1, = 2ﬁ3(11‘n lnk172 exp {— 5@ (Ed, En)},
BO(Ea, E,) =2 (xapa — op,) — otaLo (To)
= 2 [ug (92 — V§) — atp (9p — )]

(where 0~¢‘B\/7E»°‘ B\/f /2E ). lﬁ(O)
and 1/1(0) are the angles (16) for ¢ = Co- Wntmg

(19)

@ (Ed; En) = "]d V4Sd/ Eq— ﬁpVQSd/ E‘p, (20a)

and using (12a, b)-(16), we express 7, = ¢, - ¢ (2)

and To =% -y (g) directly in terms of E; and E _:

tgNa =V 2Esa|[En— (Ea+ Q)], —7<12<0,
(€, =2 VI Ea F Qs (En — (Ea+ Q) — 264l —7< 150,
N —1
E,<0 tg 5 = (V2[E.[—Ves) EZ, — << R
7 _
€5 =VIE]—V2) Eat Q' —r<y <.
These formulas can also be written in the following and ¥ k,’ we substitute the spherically symmetric

form (E_ > 0):
n g

e, —2E,—Ve,
@ (E,, E@:ZRe{‘/%‘farc tg 4 e Vea
d VE,

— l/ze" arc tg V= I:V;std }

E):
e+ (VeamV=2E)T"

ez By
— T;’ arc cosh [Ed—{— (V%—V—‘ZE,,)ZJ”’}.

In this form, ®(E, En) coincides with the ex-

It is not difficult
7

[y
=2Im {.l//—TZ arc cosh

pression obtained by Lifshitz”.
to see that the initial formula of his calculatlon
can be gotten from (8) and (9), if instead of

parts of those functions in the quasiclassical ap-
proximation, and apply the saddle-point method to
evaluate the integral

ioexp{ 31/234“1/2(); bd)dy
— g Vy ——E,,‘;—{ — V:E”]}dx,

to which (9) then reduces.
tor: x=27Ze2/r.)

Figure 3 shows curves of the dependence of
KI’(Ed, En) on ( IEn|/2ed Y% for the values of
(E,/€;) % marked on the individual curves. The
curves were constructed for the region £, <0, and
their behavior agrees with the analysis of the be-

havior of the functions ®(E , E ) which was given

by L.ifshitz.

(x and y are reciprocal
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Substituting (11) in (19), we write the total

2
b3 Edl‘in 1,

xdkn/id
78481, 1,051, (Wp)

2GEq | vy, Ge,Ry) 12

{
Gi 1 =J
Intn )
l

where &, =P -2« R, ie., ® =0
-V 8¢, |E_|/B, B =Ze?/R,, is the height of the

Coulomb barrier.
Finally, we calculate the overall cross section

-y 275 +1

—— (22)
2204 +1) Eincin In

ctot

(summed over all levels of nucleus B with £, <0)
for capture of the neutron into any level with

exp {— B®,(Eq, En)}

cross section in the form:

(En>0)

exp {—§®, (Ea, En)} (E.<<0);

E_ <0 of a heavy nucleus, whose levels are
distributed in the region £, = 0. [Capture in a
level with £_ > 0 would actually lead to the

(d, np) reaction.] Then in the summation in (22)
we need only include lévels with [ =0, i.e,

Iz =1, %, since e7 =1 drops rapidly* with in-
creasing | E_ | so that only levels with small

* We should keep in mind the case when (Ed/fd)%

> 1.8, where, according to Fig. 3, ® increases approxi-
1
mately linearly with increasing lEn l/’.
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E_ | are important in the summation, while for

. 2.
small |E_|, the quantity |vln (k,Ry)|™* is pro-
portional to Erf" . Going over from a summation

over levels to an integration [the sum over levels

0
1E9)

0

| Er? | is the binding energy of the neutron in the

ground state of nucleus B. The integral can be

\ exp (50, (Bo, E}—

BO, (E4, En) =B (Ea, 0) + ]/ L]

[according to (20a, b),(d®/I|E, %), _,
= \/—STd/ (E, +¢;)] and extending the integration

631

is equalto [d|E |/D (Wy )], and using the fact
that on the average 2/, + 1= 27, +1GEH],
=7, t%), we get from (21):

d1E,|
P (23a)

calculated approximately, by expanding ®,(E,E )

in powers of |E_ 1%

8B—E;—¢e;  —— 72
——"2 4VYTE,.| E, =
Ey+ey VIE.] E, MR?

over | E_ 1% to infinity. We obtain

7:5 gl . E E +€ 2
Otot = 12)(% O“t*‘; <B—dbd —fed) exp {_ B(D (Ed» 0)}» (23b)

where, according to formulas given earlier,

2¢, 2¢, 2Ty '
@ (L 0)=2 <‘/E—;arctg ‘/Ei—'—- l/ EZ—darctg l//%>.

6. THE REGION OF VALIDITY OF THE CALCULATION

We must emphasize that the region of appli-
cability of formulas (18)-(23) is very limited. The
fundamental reason for this is related to our
having neglected all terms Af proportional to the
value of l/l(_k)* l//kd in the region inside the

nucleus* compared to the amplitude f, given by
formulas (4)-(8). According to (13), f, is pro-
porportional to the exponential

exp{§ @ (Es E)— 7in SO,

N(©)

* In particular, we substituted into (8) the incorrect
value (5) for (Dn in the region r <R . If the correct

value is substituted, the region inside the nucleus
automatically gives a small contribution to the integral
(8), because of the rapid oscillation or the damping of
m . . .

P in this region.

while we have dropped terms corresponding to the
value of l/l(i); l/lkd for r = R ), which in the

quasiclassical approximation (if we consider
only S-waves) is determined by the exponential

exp{— /5 B®: (Ea, En)},
ooV Bl () fro(2)

1(x) =V xarccos YV —V1—x.

If we assume (as is verified by calculation ) that
the factors in front of the exponentials in Af and
f1 are of the same order, then we find that neg-
lecting Af compared to f, is permissible if

N (%) (24)

B(®: — ®) — In Ty >2-
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This condition severely limits the values of Z, E,
and ¢ _. It is well satisfied only for heavy nuclel

(Z> gO) for E; <B, and under conditions where
the angle @  is not smdl. Thus, even for heavy

nuclei, formulas (17)-(J8) give the proton angular
distribution correctly only in the region of large
values of # . This significantly decreases the

reliability of the data given in Sec. 5 on total
cross sections; for more accurate calculations, we
would have to start not from (8), but from (8b),
where the region inside the nucleus is taken into
account completely.

" The author expresses his thanks to Academician
L. D. Landau for discussion and many valuable
comments. The present calculation was carried
out in 1951, in connection with experimental work

of Academician P. I. Lukirskii and Prof. Iu. A.

Nemilov.

APPENDIX
I. DERIVATION OF FORMULA (1) FOR f,__

We multiply both sides of the Schrodinger e qua-
tion:

h? ke
{— 2 Vot [— 27 V2t Valras R)+ Ha (R)]
+ Vo (rs R)
+ Vap (It — 1 WYY = (B, + Wa) Wi}
[LﬁA (R) is the Pamiltonian of nucleus 4, .Ep +Wp

=E; ~¢;+W, by ‘I’;(R, r_) and integrate over

R and r_. This gives:

[“— :"'—':4 pr —_ Ep] F(rp) (a)
S W Vo + Vapl B dR dts,

where the function

Fiep) = ¥3R r) ¥i5” (R, 1o, 1,)dR dr,

for r, - o has the form F(rp) ~ rp'lfex exp i(kprp
-a, In 2kp T, )4 [ the outgoing wave is distorted

by the Coulomb field, since the potential on the
right side of (a) drops like l/rp asr o . Ye

consider an equation of somewhat more general

form than (a), which we get if we add to both sides
of (a) the term Vo(r )F(r ) = f‘l’ VO )‘I’(”)

x dRdr_, where Vp(rp) is an arburary functlon

which goes over into Ze2/ T for r, > oo

[vi,— Vi + k| F ey ®)

SIPB [ Vnp + le] \P(eX) dRdr,;

’ 0, 00 ’ d
Here Vy=V, - Vp, asr, >, V) drops faster
than 1/ T,
To solve Eq. (b), we note that the function

G (rp, 1p) = kp 2 %l (rp) Y1 omp (Y0 o)

Lpmp
X Li,(rp) Yigm, (35, ®p)s Ip>rp

(with a similar definition for r, < rp', with the
coordinates r and ,rp' interchanged on the right

side ), satisfies the equation

[V, = 2ME™VS + £2] G (1, 1) = 8 (rp — 1))

and, for r, o has the form

G (rp, Tp) =~ 71; exp {i (kprp— %pln 2k,rp)} ()

x 2 ex { il }L '
Loy p ‘_+l"ll 1, (rp)

X Y;p’"p (’3;7’ (P,p) Ylpmp(aﬂt ('PP)

(—)*

= (1/4wrp)exp {ikprp— ap In 2k,r,)} q» (r;,).

Here,Llp( T ) Ylpm

remains finite for r, o 0, of the equation

p( 0pcpp) is the solution, which

[V,— 2MR2Vy + kpl L1, (ro) Yi,m, (9, @p) ()
=0,

so that
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[ . .
Llp (rp)z(kprp)_l Sin (kprp‘—‘—,é_' +7“p_“p]ﬂ 2kprp)’ lf rp-am’

‘Mlp (rp ) Ylpmp( o cpp) is the other solution (singular for r, o 0) of the same e quation, so

- . lpTt .
f}‘fzp (rp)=(kprp)™ exp {L (kpr,, — 5=+ M, —%In 2k,,r,,)}, if rp—o0.

Finally,
WOy =an D exp{ 2 —ing b L (7)) Vi (9 @) Vipmp (8
kp (Tp) = 4 eXpP\—3 in,e Li(rp) Yim, (95, ¢,)Y1pmp (9, @p)
lp»mp
is the solution of the same equation (d), which spherical wave distorted by the Coulomb field.
for 1 o becomes a sum of a plane wave (with It is clear that the required solution of Eq. (b) has
P the form:

wave vector kp = kprp /rp ) and an outgoing

F(r) = =G (5 1) @I (W5 (R, 1) [Vip (10 — 15 )

+ Vi (15 R WS (R, 10, 1) dR dry} dr.

For r e, F(r,) according to (c) has the form Il. CALCULATION OF THE INTEGRAL [o( o).

of an outgoing wave, while (c) gives the value of (Cf. REFS. 11, 12)
the amplitude f, which appears on the right of

Eq. (1) in the body of the paper. For the special
choice V;) =Ze?/ r,» V, has the value Vp - Ze? T,

We substitute into the integral (9) given in the text
the expressions for the Coulomb functions, where
we use for the hypergeometric function F(a.,y, z)

given in the text. =e F(y-a, y, - z) the representation:
F(1—e,1,—2)= P_I{?(l—)'o?) 20—1izez iou‘*—l—%“"z Jy—1(2V zu) e du. )
b
This gives:
Io(e) = LT Cr e ) i@’“" e d'vgu"“p v du X (w, ), 0
X (1, v) = Sexp{—- Bn + i (Ba + ko)) 1} Jo 2V Thano)l, 2V ik ) o=
Fere,n=r—rt-k,/ky, &= r+r-k,/k, (or =t cos¥(%,/2) + 7 sin? (9,/2)

n'=r—r" kp/kp, E=r+r’ kp/kp) are parabolic
coordinates, + 2V Eqcos (9,/2)sin (9, /2)cos o,
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where cos ¢ =k - k,/ k,kg. @ is the angle be-
tween the planes of the vectors k, kp and k, r.

The calculation of X(u, v) is conveniently done
in the parabolic coordinates & 7, ¢ in which

r=Y(&+n), de=md édnd/2m -2 (ik u &))"
=(0?+p%-20p ckos(rr—cp))l’é,where o
= 2(i/cp§u)% cos ( 6[‘)/2), p= 2(ikpu17)%

x sin ( & -9/2)' According to the addition theorem:

Jo(2 Vikpuf;’) = Z J (5) Ju (p) € in=—2),

= 00

so that the integration over ¢in X(u, v) gives
simply

271

S Jo @V ikid) dy | 2% = Jy(3) Jy (p),

0

fromwhich X (u, v) ==, e,

where
G =\ ety (o)
0

N | . kpu > )
= (l/a)exp‘— z—a—cosz—z’-’—},

o=\ e 10 (6)Js 2V TRavm) dn

0

1 { kpu 9 kv l
= — eX —_7 s 9 P .
=3 P l 2 Sin —2 — 1 2 I

g 2VFE k uv 9
X Jo (“———_—Z a sin ;) ,

and a = %] K, =1 (kp +k, )]. In this integration

we have used the general formula:

g e, (oata'ls) J. (Bua'l) ds
0

la

in o
— — pl(x*+p?)/aa
e J,,,( T )

Thus
X(u, v)= aizexp {—i(kpu + kgv) | a}

.8
X ./o(a3 V' kpkauv sin —é’—)

Substituting this value in (f), keeping in mind
Fa. (e), and noting that

1 ©
F(ocﬁ-rz) = o) S e—u ua_IF(B, T uz) du,
0

we get:
o ‘n.'./‘ ]/ “p“d- a iag+41
Io(3p) = a? (a+ikd>
a1
X ( a >‘ Pt e—n(ap+ad)
at ik,
X F(i“d + l»iap"{" 1,1, _’;)’
k_k 9 9
wherel — a’p i3 P . p
C @T 7, e Ty Si* 3 =Cosin? 2,

Substituting the value

F(iad + l,l.dp + l,l, —C)
= (1 4+ O™ P (g, — iy, 1, — 0),

we then have:

7'V wpg exp{—mn(a, + a,)}
(a + i/'ep) (a +iky)

I, (91:) =

ia
X( (a+ik:)(1+§) ) d

a >‘°‘.aF (— ioy, — a1, — )

X(<a+z‘fe,,>u+c> 5%

After some elementary transformations, one gets
from this to the value given in the text.
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[II. THE ASYMPTOTIC FORM OF
|Fiog, o, 1, -O|*FOR ay > 1

For a; > 1, the contour integral
F (ing, ixp, 1, —10)

u—1

— L §<_L_)i“”(1 + Ly et

— {exp fap ()} 2
& 14/

(where the contour C encircles the points + 1 and
— 1 on the real axis) can be evaluated by the
saddle-point method; the result, according to
Sommerfeld!!, is

'F(iadv iap’ 1,'—'C) |2 (g)
= | exp {oup (o)} (274 | %o | o)1 2

where

o(u) =ilnuf(w—1)"°(1 +Cu)?, p=ap/xa;
iy = 1;" +%‘/ écg——(l—-p)“" is the

solution of the equationcp'(uo) =0,

U . 2ug— (1 —p)
| 9o = 19" (1) | = | — L ———71—
(uf— uy) (—g + llo)

V@) —(U—e)?
- p(147)

[in the last equation we use the fact that

[(w? —ug)(ug + D) =] =pluy + T H2|
=p(1+{)¢?]. It is assumed throughout that

p < 1, but since F (i oy, io, 1, = {) is symmetric
in oy and oy the final formula is also valid for

p > 1. Substituting the values of | ¢ | and u in
(g), and using |u, |2=p/ ¢ and

aq [ (o) + ¢" (1o)] = 2raxp +2 (@aha — %pPp)s

where ¢, and ¢p are the angles defined in (16), we
obtain for | F (ioy, io, 1, = &) |? the value (15)

given in the text. The saddle-point method is
applicable if

oy | ’{/gl = L2 [(atg2p [ €)
— (xp—aa)?]s [p(1 +0) > 1.
This condition limits the values of{ to those
satisfying the inequality { > {’given in the text.

Translated by M. Hamermesh
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