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The differential cross section for the ( d, p ) reaction on a heavy nucleus is calculated for 
the case where the effect of the Coulomb field is fundamental in determining the angular 
distribution. The differential cross section over the region of large angles increases with 
increasing angle, while the beha":ior of the cross. section is weakly deyendent on t.he ~gular 
momentum ln of the state into wh1ch the neutron 1s captured. The tota cross sectiOn 1s 
determined and the factor multiplying the exponential is estimated. 

A T the present time, the ( d, p) reaction has 
been studied in detail mainly on light nuclei, 

where the effect of the Coulomb field of the nu­
cleus is not very important. In this case, the pro­
tons which are formed emerge mainly in the forward 
direction and their angular distribution depends 
strongly on the angular momentum l of the state 

n 
into which the neutron is captured. These experi-
mental data are in ~ood agreement with a formula 
proposed by Rutler ; however, it is still not 
clear why this agreement occurs, since the ap­
proximations used by Butler actually correspond 
to the Rorn approximation 2 , whose applicability to 
the calculation of the ( d, p) reaction has no basis 
whatever. 

We shall consider a different case of the ( d, p) 
reaction--on heavy nuclei, for low energy Ed of 
the incident deuterons (Ed <Ze 2/R 0 ), where the 
effect of the Coulomb field of the nucleus is the 
main factor in determining the angular distribution. 
In this case the protons from the ( d, p) reaction 
emerge mainly backward, and their angular dis­
tribution depends weakly on l . In our case, the 

n 
whole calculation can be made consistently on the 
bas is of the methods of perturbation theory, which 
is known to be applicable for large Z and small 
Ed, because of the smallness of the matrix ele­
ments containing the Coulomb wave functions in 
the repulsive field. 

The total cross section for the ( d, p) reaction 
on heavy nuclei (i.e., the Oprenheimer-PhiJHps 
process) was calculated by perturbation methods 

1 S. T. Butler, Proc. Roy. Soc. (London) 208A, 559 
(1951). 

2 E, Gerjuoy, Phys. Rev. 91, 645 (1953). 

in a whole series of older papers a- 6 • 7 , whose 
authors limited their considerations to just the 
spherically symmetric part of the functions 
t/Jk (r) and t/Jt) (r), describing the motion (in the 

d p 

field of the nucleus) of the incident deuterons 
and emerging protons, with momenta 1r kd ;md 

n kP at infinity. To calculate the angular dis­

tribution, it is necessary to consider all terms in 
the expansion of these functions in spherical 
waves. This is the basic difference between our 
calculations and those of Lifshitz 7 • 

l. THE AMPLITUDE FOR THE (d, p) REACTION 

The exact value fex of the amplitude for there­

action d + A -> B + p is· given by the formula 

(l) 

(the derivation of this formula by the usual methods 
is given in an Appendix at the end of the paper). 
Pere Vnp == Vnp(irn- rP I) is the interaction energy 

of a neutron and a proton whose coordinates are 
rn and rP, v; == VP(rP, R)- Ze 2/rP is the energy 

of interaction of the proton with the nucleons of 

3 
J. R. Oppenheimer and M. Phillips Phys. Hev. 48 

500 ( 1935 ). ' ' 

4 H. A. Bethe, Phys. Hev. 53, 39 (1938). 
5 

P. L. Kapur, Proc. Roy. Soc. (London) 163A, 553 
(1937). 

6 G. M. Volkoff, Phys. Rev. 57, 866 (1940). 
7 

E. M. Lifshitz, J. Exper. Theoret. Phys. USSH 8, 
930 (1938). 
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nucleus A minus the Coulomb energy, R represents 
the collection of coordinates of the nucleons of 
nucleus A, at whose center of mass the origin is 
locaterl, 'I' 8 is the wave function of the final 
nucleus B, 1/Jk(-) ( r ) is the Coulomb wave func-

P p 

tion describing the motion of the proton; as 
r P -> oo, it rerluces. to a sum of an incident plane 
wave ( correspondmg to the momentum 1rkd) and 
an outgoing spherical wave*. qt(kex)denotes the 

- d 
exact wave function of the system; to go over from 
the exact formula (l) to the formula given by the 
first approximation of perturbation theory, we re­
place it by the "incident" wave, i.e., by 

-r= 1/ 2 (rn+rp). p=rn-fp. 

Here 'I' A is the eigenfunction of the nucleus A, 
while Cf\d describes the motion of the deuteron in 

the pure Coulomb field Ze 2 I r : 
p 

with momentum-hkd at infinity (Ed =-h 2k~/4M, 

f.d = 2.23 mev is the binding energy of the deuteron). 
Replacing '~tx) by 'I'A Cf\d and neglecting in (l) 

the potential V ;. which differs from zero only for 

r < R 0 --in the interior of the nucleus A, where 
p-

¢~-; and Cf\d are exponentially small (if Z is 

large and Ed small), we obtain fex-> {1, where 

* We always normalize the wave functions of the 
continuous spectrum to unit amplitude at infinity. 

(2) 

The function 

is the wave function of the neutron in the final 
state. This same value of {1 can be obtained by 
the standard methods of perturbation theory as the 
matrix element for the transition between the non­
orthogonal states 'I' A cpk and '1'8 t/J~-l. 

d p 

In the region of values of rP and rn greater than 

RQ, which is the important region in the integrals 
(1) and (2), w~~x)is a sum of an "inciflent" wave 

W A cpkd and various scattered waves (caused 

solely by nuclear interaction*), whose amplitude 
. decreases exponentially with increasing Z and 
decreasing Ed. Therefore, the difference fex- (1 

is smaller [i.e., F q. (2) is more exact] and the per­
turbation series converges the more rapidly, the 
larger Z becomes and the smaller Ed' 

We express (2) in a form suitable for computation. 
The_regions which are important in the integral 
(2) are r > R 0 , and small values p<r0 , where r0 

is the rang ... e of the potential V ; i.e., the import-
np 

ant region is ~ p « r ( r 0 is always much smaller 
than R 0 ). In this region the variables rand pin 
the equation for cpkd are separable, and its solu-

tion to terms of order (p/2r) 2 < (r/2R 0 ) 2 has 

the simple form: cpkd "' cp d (p) t/Jkd (r), where Cfid 

is the internal wave function of the deuteron: 

( Kd = Ohd)y, /1i, ~d ~ 3'2 is a correction factor for 

normalization) and 1/Jk is the solution of the 
• d 

equation 

* The scattering of the deuteron in the Coulomb 
field is already taken into account in the "incident" 
wave \J!A Cf\d; for this reason the word "incident" is 

given in quotation marks. 



622 K. A. TElt-MAHTIROSIAN 

which, for r-> oo, goes over into a sum of plane and 
spherical outgoing waves. In other words, in the 
region of small p/2r, which is important in the in­
tegral (2), the polarization of the deuteron by the 
Coulomb field is unimportant*. Substituting this 
value of <p k in (2), ~d setting vi:} ( r - Yz p) 

d p 

""t/1~) (r), <ll (r + Yzp)"" <ll (r), which are correct 
p n n 

up to terms in the squares of the quantities kpr 0 /2 

andKr 0/2(K =(2M\E \)~/1c,\E \isthe n n n n 

neutron binding energy in nucleus B), which are 
small compared to unity*: we obtain 

smce 

A formula completely analogous to (4)_ was ob­
tained by Landau anrl Lifshitz 8, in considering the 
( d, np) reaction (breakup of the deuteron in the 
field of the nucleus). In this reaction the final 

* In papers 3-6 the amplitude (2) was written in the 
form 

so that the import~nt regions in the i~tegra! are 
'n :5: R 0 • 'v > R 0, I.e., p /2 "" r. In this regwn we have 

to take into account the deformation of 'fd under the 

influence of the Coulomb field, and 'fkd has a very 

complicated structure; the authors of the papers cited 

limited themselves to the setting up of the spherically 

symmetric part of 'fkd' 

** The line~ terms in the expansions of t/J(k~ ( r _ 'A~) 
and <Pn (r = ll,p) in powers of p vanish 

.... 
when we integrate over the direction of p in (2). The 

quadratic terms are small: ( k r0 f 2 )2 "-' E ( mev )f40 
p p ' 

( Knr of 2 )2 •v En (mev )f40. 

8 L. D. Landau and E. 1\1. Lifshitz, J. Ex per. Theoret. 
Phys. ussn 18, 750 0948). 

state of the neutron is a state of free motion, so 
that IJI 8 can be represented approximately 8 in the 

form IJIA ~ eikn•rn, i.e., according to (3) 

<ll n ( r n ) is a plane wave "-' ei kn·rn ( if we do not 

take into account the change of the neutron wave 
function under the action of the nuclear force field 
which is actually not small). ' 

2. THE NEUTRON WAVE FUNCTION <I> (r) 
n 

In the region r > R 0 , which is important in (4), 

the function <lln(r) of Fq. (3) satisfies the equation: 

where En = W 8 - W A is the binding energy of the 

neutron in nucleus B ( W 8 and WA are the energies 

of nuclei B and A), and in accordance with the 
transformation properties o£ IJ:IA and IJI B under ro-

tation and inversion of the coordinate axes, has 
the form: 

(5) 

[From now on we write <ll (r) as <I> (r s: ) i.e. we 
n n ' sn ' ' 

include the neutron spin variable. l Here I AM A, 

I 8 M 8 are the angular momenta of nuclei A and B, 

jnpn' lnmn anrl sn = Yz, an are the ouantum numbers 

of the total, orbital and spin angular momenta of 
the neutron (for given ,. , l is ,. + Yz or ,. - ~i de-

n n n n ' 

pending on the parity of IJI A and IJI 8 ), Ci fl. 
il/-':li2f1.2 
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are the Clebsch-r.ordon coefficients, X a is the s,. 

spin function of the neutron, K,. = ( 2UI E,. ll\1 /-h 
for E < 0 and K =- ik =- i ( '2ME )l1 /-h for n n n n 

E > 0. T). 1 in (5) is a constant depending on the 
n ln n -

structure of the nucleus. It can be estimated !T'ost 
simply as follows. '.':'e first consioer those levels 
of nne leus B for which the neutron energy En is 
positive. If the function (5) is properly normal­
ized (in accorctance with the normalization of '11 8 

so that the integral of I tp 8 12 over the interior of 
the nucleus is unity) the total radial flux of neu­
trons is 

'U,. 
= - "' I 'f)· 1 12 M L.Jin "IJn n 

and is equal to the neutron width [' /-h . n 

=~. I'. 1 /-h. Thus, 
In In n 

We know 9 that 

rin 1,. 

where the function in the square brackets depenrls 
on the nuclear structure ( W 8 is the energy of 
nucleus B). In order to estimate it, we consirler 
h · 1 · ll z 0 h 9 10 r t e specta case ln = /2, n = . , w en ' ~ y, 0 

= ( l/2rr) (E,./E 0 )Y. Dy, 0 ( W8 ), where Dis the 

level spacing anrl £ 0 "'0.7 mev. Comparing this 

value with the general expression given above, and 

setting -h / y 2 :11 E 0 = ~ y, of Kd [where ~ y, 0 

=(fd/2£ 0 )~2 "'1.251 for convenience in writing, 

we have: 

9 H. Feshbach, D. R. Peaslee and V. F. Weisskopf, 
Phys. Rev. 71, 145 (1947). 

10 A. I. Akhiezer and I. Ia. Pmueranchuk, Some l'rob­
lems of Nuclear Theory, GITTL, 1950. 

[ +.' (W - ~., o 
- J'/,o s)] 1 = 4rc~ D.,,o(Ws). 

d 

We keep this same estimate for l,. =/= 0, setting 

where ~. 1 is a constant of the order of unity. 
Then ln n 

(6a) 

xdr ~. )( 
I i ! 12 = ~ = ...!..:2.!..!!. '"fl. n n V "Le:dc·,. "Lrc 

Thus, the condition that the integral of I 'I' 8 12 

over the interior of the nucleus be equal to unity 

determines I Tfi,.ln \2 as an analytic function of the 

neutron energy En. The form of this function does 

not change when we go from levels of nucleus B 
with E > 0 to levels with E < 0; when this is n n 
done we must write K in place of -ik on the 
right-hand side of (na}*: . n 

(6b) 

f'ormulas (5)-(n) completely determine <D (r) over 
n 

the region which is important in the integral (4). 

* This same value (6b) can be gotten directly from 

the condition that the integral of\ tp8 \2 over the in-

terior of th" nucleus be equal to unity. \\e emphasize 

one<· more that the constants Kd and fd of the theory of 

tlw dPutcron arc introduced here only for convenience 
in \vrit in~ the formulas. 
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3. THE DIFFERENTIAL CROSS SECTION 

Since the spin of the neutron was included in (5) 
to make our formulas precise, we shall give the 
expression (4) for the amplitude including the 
spins of all the particles: 

where X and X a are the spin functions of 
SpCTp Sd d 

the proton and deuteron ( sP = Yz, sd = l ). Sub-

stituting <I> n from (5), we express the differential 
cross section for the ( d, p) reaction 

in the form 

(7) 

(8) 

Pere we have made use of the facts that 

~ ~~A.,n(X~n"nX;p"p' Xsaaa>l 2 = ~ ~IAanl 2 , 
"p"d "n "n 

The Aa are arbitrary quantities: ~' ) 
n ( Jln- an = mn 

denotes summation over all values of JL and a for n n 

which p. -a = m , where m is fixed. We note n n n n 

that formulas (7)-(8) corresrond to the formulas of 
Butler. 

We omit from the integral (8) the region of in­
tegration r.:::; R0 , which is unimportant in the case 
we are considering, and set: 

f'(l) _ ~ /2~dxd 
Jl m -v--n n 7t 

X 

(8a) 

For large Z, (8a) practically coincides with (8); on 
the other hand, if we formally set Z = 0 in (8a), so 

that tjJ<;}* t/Jkd = exp l i ( kd - kp ) · r l, then (8a) and 

(5) give l3utler' s 1 result: 

[ d ( Vz (xnr) J 
X a ( ) - n --Xnr 

ln qr dr r e , 

-- (x) 
where q=jkd- kp ~ G1n(x) =y77/2x fln+%' fln+Y. 

is a Ressel function. 
Thus (8a) is an interpolation formula, correct 

for large Z and reducing to Ruiter's formula in the 
limit Z-> 0. In the following we shall limit our­
selves to the case of large Z and shall use (8) 
rather than (8a), with the value of <I> n given by 
(5) even for r.:::; R 0 , since it is more convenient to 
calculate the integral over the whole space. Thus 
the results which we shall obtain rlo not reduce to 
Butler's for Z -> 0. 

4. ANGULAR DISTIUBUTION 

In the quasiclassical case which we are con­
sidering, when Z is large and Ed small, and 

CJ.a = Ze 2lflvd > l, CJ.v = Ze 2l"h vv > l ( vP 

= y 2EP/M, vd = vEa!M ), the angular distribution 

and the variation of the cross section with energy 
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depend weakly on ln. In fact, in this case the 
factor 

in the integral (8) varies exponentially as a func­
tion of r. 

The value of the integral of such a rapidly vary­
ing function is determined by its value in the 
neighborhood of the saddle point r 1 ( r 1 , f} 1, cp1 ), at 

which F(r) =- Knr + ln [lf!i)*!frlcd] is an extremum. 

Therefore, the slowly varyid'g spherical functions in 
(8) can be evaluated at f} = {} 1 and cp= Cfi and removed from 

the integral; if* K r1 > l ( l + 1 )/2 then the func-
n n n 

tion v 1 = 1 + l (l + 1) / 2 K r + . . . in the re-
n n n n 

maini ng integral can be replaced by its asymptotic 
value v 1 "" l. This gives 

n 

/
(1) 
lnmn. (9) 

= Y2~axd/1t'Yiin ln V 47t Ytnmn (&1, (PI) fo (&p), 

fo (&p) = vb ~ e-xnrlji~~>· (r) 'fka (r) ~. 

Substituting f\1 > m in (7) and using the fact that 
n n 

477 l n 

* This condition is almost always fulfilled if ln is 

not very large and I En I is not very small. For an __ 
estimate, we can use the value r1 = Ze2/[Ea + (Y2 i tin I 

- 'V&;;)2}, which was gotten 7 in calculating an integral 

of the type of (9) by the saddle-point method. Then 

which, for heavy nuclei, gives a value of about ten for 

Kn '1· 

2k 
drJjnl n = ajnlnX~ lfo (&p) 12 k p dQp• 

d 

(lO) 

Here a. 1 denotes a dimensionless constant, 
1 n n 

independent of {} P and Ed and equal, ace ording 
to (6a, b), to: 

(y;T~d rinln 

~-n-yedt!.n' 
-~ ~d~inln Dfnln(WB) exp{2xnRo} 

t n2 Ed I Vtn (xnRol 12 

(ll) 

En<O. 

Thus only the absolute value of the cross section 
depends on ln. and not its variation with angle 
and energy. 

After substituting in (9) the exact values of the 
Coulomb functions: 

the integral can be computed exactly (similar in­
tegrals were evaluated by Sommerfeld 11 •12 ). The 
details are given in the Appendix, where it is shown 
that 

r (xn- ikd)2 + k~ 
X L x7l + (kd- kp)2 

The argument (of the hypergeometric function de­
pends on the angle fJ between kd and k : 

p p 

11 A. Sommerfeld, Atombau und Spectrallinien liB., 
Braunschweig, 1939. 

12 A. Sommerfeld, Ann. d. Physik 11, 257 (1931). 
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,. _,. s1·n 2 (" /?)· ~ -'-::0 ~ 1 'llp, ..... , 

4 V2E. 1/:il -r Q) 

(V2td-Vi~d+(Jf+Ji.n' 

where Q=EP- Ed =-En- fd is the Qofthe re­

action. For E < 0, K is real, so that the 
n n 

quantities in square brackets in /0 ( t'J P) are 
complex: 

where c 1 and c 2 are the moduli of the complex 

quantities, and the phases are determined (for 
En < 0) by the equations: 

2VJ 1:;n J (C 1 + Q) 

J:.:d + e;d 

02a) 

According to (12a), the angles % and Cf'p go to 

zero for I En I -> 0, and obviously remain equal to 
zero for any En > 0, when Kn ==- ikn is a pure 
imaginary number: 

(12b) 

We can therefore write, for E > 0 and E < 0: 
n n 

4rrV rr:xd<Xp I fo (&p) I = 2 12 exp {- (xdrd- <Xp'fp)} 
(kd-kp) +x" 

X I e-rr<z.pp (ia.d, i<XP' 1.-- 1:) I 
1 + ~ 

I 

or, according to (lO): 

(13) 

where the function 

determines the dependence of the cross section on 
f} p· In the case we are considering, when 
cxd > l, or rxp > 1, the hypergeometric function has 
the following asymptotic value: 

05) 

1 + ~ exp{2rt<XP + 2 (ocAd- ocp<Jip)} 

= 2rrocd~ V( 4p/~) _ (1 _ p )2 

the derivation of which is given in the Appendix. 
The angles V'd and t/JP are defined by the equations 

(1- p) ~ + 2 (16) 
cos 'fd= v ' 0--< 1\!d--< Tr, 

2 1 + ~ 

cosrli,p= (1-p)~-2p 0 ~·" ~Tr (1fia) 
2pV 1 + ~ ' "'"""' 'f P"'"""' ' 

where p == rxp/ rxd == kd/2kp == (Ed/2EP )!4. The 

equality (15) is valid for not too small t;"--roughly 
speaking, until t.:""-' 1/ rxd; more precisely, for 
t;"> C, where 

( cf. the Appendix). If t;"-> 0, then IF ( i cxd, icxp' 

1, - () / ( 1 + t;")l -> l Therefore: 
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N(C)= {[C(l+C)V(4p/C}-(l-p)2r 1 exp{2(cxa'fa-cxp'fp)}, if C>.C'. (l7) 
2'1tcxaexp{-2'1tcxp}. if c~o. 

or 

where 

Lp (C)= 2 ('fa-·P'fp), L~ (0) =-21tp, 

Mp (C)= c ( 1 + C) V~( 4-:-p--:-/ =-q-(-:-:-1-p~)2 • 

3 !j 

The function N ( 0 is a. maximum for {} P = rr, 
t; = t;0 ; for small rr- {}P, 1ts dependence on 

F'IG. 1 

-----------------------------------
Graphs of the functions LP(I) and Mp ( t;) are 

shown in F'ig. LAs we see from the figure, Lp<t;) 
increases with increasing t;[ reaching zero for 
t; = 4p/( l- p ) 2 , while t;0 < 4p/( 1- p ) 2 through-

out]. This increase causes an exponential in­
crease inN ( t;), i.e., in the cross section, with 
increasing 1JP. 

7 § f(J 11 

rr- {} is approximately a Gaussian. This can be 
seen by expanding L P ( t;) in series in powers of 

t; 0 - t;= t; 0 cos 2 ( tJ/2)"' t;0(rr -1JP) 2/4: 
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where 

(dLP) _ V (4p/~n)- (1- p)2 
(since d~ , 0- 1 + ~o ' 

(V~ + VE;;+Q) 2 + Q +Ed 

~Ed 

) and neglecting 

the change of the factor M p ( ') outside of the ex­
ponential i111 (18). We then get: 

tg (;~s) ' 

Z='IO 

JO• go• 150. 

Ze2 1/M 
~ = -x- r £;; = o.rs z. 

The width o of the angular distribution is smaller, 
the larger Z and the smaller Ed' and the higher the 
nuclear level into which the neutron is captured 
(i.e., the smaller Q). This conclusion also fol­
lows from consideration of the angular distribution 
curves of Fig. 2 for various cases (the curves are 
drawn on a logarithmic scale). 

t•60 
7 

8 

9 

~= 
JD" go· 150" 

FIG. 2.1-En=-2, 2-En=-4, E=2 
mev; 3-En =1, 4-En=O, 5-En = -2, 
E =4 mev ;6- En=O, E =6 mev ;7-En= 
=0, 8-En=-2, 9-En=-4, E=4 
mev; 10-En=O, 11- En =-2, 

12- En= - 4.E = 6 mev 

5. TOTAL CROSS SECTION 

In order to calculate the total cross section, we 
integrate (18) over 1J ; noting that d Q 

- - p p 

= ( 4rr/ ' 0 ) d (, we get the integral: 

= 41t" r exp {rx.dLP (m d~ ' 

?:o o t; ( 1 + ~) J/ ~ - ( 1 - p )2 
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in which, because of the decrease of L ( () with 
. . / / p 
mcreasmg so - c,, the values of (near to ( 0 are 

~mportant. Therefore, as before, we expand L P ( () 

m powers of x = ( 0 - (and extend the x integration 
to infinity. This gives 

(the factor in front of the exponential was taken 
outside the integral and evaluated at ( = ( 0 ). 

According to (13) we then have: 

:;inln =2TC3ainlnk;t2 exp{-~W(Ea, En)}, (19) 

pw (Ea. En) = 2 (cxa?d- CXp'?p)- cxdLp (~0 ) 

= 2 ( CXa ( Cfd- 't~u)) - CXp ( Cfp -lji~O))} 

(where o..d = (3y'----;;_l Ed, o.. = (3y f 1 2E ). tj~<o> 
(0) p d p d 

and t/1 P are the angles (16) for ( = ( 0 • Writing 

and using (12a, b )-{16), we express Tfd =era- tjJ (~) 

and Tfp = Cflp- t/1 (~) directly in terms of Ed and En: 

En>O rg"ljd = v~ I [En- (Ed+ Q)], -'It<;: "lld<:;: 0, 
tg "flp = 2 V 2 (Ea + Q) sa I [En- (Ea + Q)- 2sa], -'It<:;: "flp <:;: 0, (20b) 

These formulas can also be written in the following 
form (E > 0): 

n < 

w d. n) = 2Re -. arc tg n r d 
""'(E E {{4e:d V-2E _,IS" 

Ed VEd 

In this form, <D (Ed' En) coincides with the ex­

pression obtained by Lifshitz 7 • It is not difficult 
to see that the initial formula of his calculation 7 

can be gotten from (8) and (9), if instead of rf; <j} 
p 

and rf; k , we substitute the spherically symmetric 
d 

parts of those functions in the quasiclassical ap-
proximation, and apply the saddle-point method .to 
evaluate the integral 

to which (9) then reduces. ( x andy are reciprocal 
to r : x = Z e 2 / r. ) 

Figure 3 shows curves of the dependence of 
<D(Ed, En) on (\En\ I 2fd )~for the values of 

(Ed/ fd) ~ marked on the individual curves. The 

curves were constructerl for the region En < 0, and 
their behavior agrees with the analysis of the be­
havior of the functions <D (Ed' E ) which was given 
by r .ifshitz. n 
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0.2 0.'1 0.8 0.8 1.0 f,Z f.l/ 1.8 t.B z.o 
y·IEn/2e 

FIG. 3 

Substituting ( ll) in (19), we write the total cross section inthe form-: 

·-------- ---- ·- -·--. -----------
( rt2~drin ln 
J xdknl:.d exp {- ~<I>l(Ed, En)} (En> 0) 

l 1t~d~fnlnDfnln(Wa) l 2x~Ed 1 v 1n (xnRo) 12 exp {- ~<I>1 (Ed, En)} (En< 0); 

where f3 <1> 1 = f3 cD - 2Kn R 0 , i.e., cD 1 =<I> 

-y 8£d lEn I I B, B = Ze 2/ R0 is the height of the 

Coulomb barrier. 
Finally, we calculate the overall cross section 

(summed over all levels of nucleus B with E < 0) 
for capture of the neutron into any level with n 

E < 0 of a heavy nucleus, whose levels are 
n 

distributed in the region E 0 :::' 0. [Capture in a 
level with En > 0 would actually lead to the 
( d, np) reaction. l Then in the summation in (22) 
we need only include lxvels with l = 0, i.e, 
I 8 = I A ± ~. since e -p <I> l drops r~pidly* with in-

creasing I En I so that only levels with small 

* We should keep in mind the case when ( Ed/fd)'A 

2: 1.8, where, according to Fig. 3, <I> increases approxi­

mately linearly with increasing I En l'A. 
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\En\ are important in the summation, while for 

small \ E \,the quantity \ v 1 ( K n R0) \- 2 is pro-
n n 

portional to E~n . Going over from a summation 

over levels to an integration [the sum over levels 

\ {;; ~ \ is the bin;ling energy of the neutron in the 

groun<1 state of nucleus B. The integral can be 

[accor..l.ingto (20a, b).(a<Pja\En \Y.)E =O 
--- n 

= y 3fd/ (Ed + fd )] anrl extenrling the integration 

where, according to formulas given earlier, 

is equal to .fd \En \ / D ( W 8 ) 1, and using the fact 

that on the average 2 J 8 + l = 2/ A + l (if f 8 

= ! A ± ~·~ ), we get from (21): 

(23a) 

calculated approximately, by expanding cl> 1(Ed,En) 

in powers of \En \y,: 

I E I \1, • f" • IYI b over n to m mrty. 111e o tain 

(23b) 

( -. j2r;;a -. j2<. 1 r4t" /"£) 
<I> (Ed, 0) = 2 V 1:.~ arc tg V J:.P -1/ l:.ad arc tg V :.a . 

6. THE REGION OFV ALIDITY OF THE CALCULATION 

TI'e must emphasize that the region of appli­
cability of formulas (18)-(23) is very limited. The 
fundamental reason for this is related to our 
having neglected all terms l'lf proportional to the 

value of ~/;}* t/Jkd in the region inside the 
p 

nucleus* compared to the amplitude f 1 given by 
formulas (4)-(8). According to (13), f 1 is pro­
porportional to the exponential 

{ (3 1 N (~o)} 
exp 2 <I> (Ea, En) - 2 1n 1'v (l:) , 

* In particular, we substituted into (8) the incorrect 

value (5) for <Pn in the region r < R 0• If the cocrect 

value is substituted, the region inside the nucleus 

automatically gives a small contribution to the integral 

(8), because of the rapid oscillation or the damping of 

<Dn in this region. 

while we have dropped terms corresponding to the 
value of t/J(k: t/Jkd for r = R 0 , which in the 

quasiclassical approximation (if we consi'der 
only S-waves) is determined by the exponential 

1 (x) = v;arccos v;-Vi- x. 

If we assume (as is verified by calculation) that 
the factors in front of the exponentials in l'lf and 
[ 1 are of the same order, then we find that neg­
lecting l'lf compared to f 1 is permissible if 

R "") N (t:,,) > 2 
t' (<I>z- '*' -In 1\ (t:> • 

(24) 
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This condition severely limits the values of Z, Ed 
and {} . It is well satisfied only for heavy nuclei 
( Z >SO), for Ed < B, and under conditions where 

the angle!} P is not small. Thus, even for heavy 

nuclei, formulas (17)-(18) give the proton angular 
distribution correctly only in the region of large 
values of t~p· This significantly decreases the 

reliability of the data given in Sec. 5 on total 
cross sections; for more accurate calculations, we 
would have to start not from (8), but from (8b), 
where the region inside the nucleus is taken into 
account completely. 

The author expresses his thanks to Academician 
L. D. Landau for discussion ann many valuable 
comments. The present calculation was carried 
out in 1951, in connection with experimental work 
of Academician P. I. Lukirskii and Prof. lu. A. 
Nemilov. 

APPENDIX 

I. DERIVATION OF FORMULA (1) FORfex 

We multiply both sides of the Schrodinger equa­
tion: 

{ 1i,2 2 [ 1i,2 2 ' 
- 2MV'rJJ+ -.2Ji1V'rn+ Vn(rn, R)+.rtA(R)] 

+ Vp (rp, R) 

+ Vnp(lrn-rpi)}'Y~~x) =(Ep + WB)'Y:; 

.... 
[}!A (R) is the flamiltonian of nucleus A, EP +W8 

=Ed - (d + w A 1 by w; ( R, rn) and integrate over 

R ann rn. This gives: 

(a) 

where the function 

for r -> oo has the form F(r ) -v r- 1{ expl i(k r 
p p p ex p p 

- rx ln 2k r ) I [the outgoing_ wnve is clistorted p p p .. 

by the Coulomb field, since the potential on the 
right side of (a) drops like 1/ r as r -> oo]. '.l:'e . p p 

consirler an equation of somewhat more general 

form than (a), which we get if we a-10. to both sides 
of (a) the term V0(r )F(r ) = ('P8* V0 (r )'P<kex) 

p p p p p d 

x dRdr , where V0 ( r ) is an arbitrary function 
n P P 

which goes over into Ze 2/ r for r .... oo: p p 

(b) 

2M\ 'Y* V V' uJ' (ex) d d = 1i,& J B [ np + p] "1: kd R rn; 

Pere V' = V - V0; as r -> oo, V' drops faster 
p p p p p 

than 1/ r . 
p 

To solve Eq. (h), we note that the function 

0 (rp. r~) = kp ~ .rtzP (rp) Yzpmp (&p, <pp) 
lpmp 

(with a similar definition for r < r ', with the . p p 

cooroinates r and r' interchanged on the right p ·p . 

side), satisfies the equation 

and, for r -> oo, has the form 
p 

0 (rp, r~)~-}- exp {i (kprp-otpln 2kprp)} (c) 
p 

Here,L 1 ( r ) Y 1 ( {} cp ) is the solution, which 
P P pmp P P 

remains finite for r -> 0, of the equation 
p 

=0, 

so that 
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J</1 (rP) Y1 ( ~ , cp ) is the other solution 
P pmp P P 

Finally, 

is the solution of the same e ouation (d), which 
for r -> oo becomes a sum of a plane wave (with 

p 

wave vector k = k r I r ) and an outgoing p p p p -

(singular for r P -> 0) of the same e ouation, so 

if rp~ oo. 

spherical wave distorted by the Coulomb field. 
It is clear that the t·equired solution of Eq. (b) has 

the form: 

+ v' ( I R) \U (eX) R I I p Tp, ] I kd ( , Tn, fp) dR drn} drp. 

For r -> oo, F(r ) according to (c) has the form p p . 

of an outgoing wave, while (c) gives the value of 
the amplitude fex which appears on the right of 

Eq. (l) in the body of the paper. For the special 
choice V0 = Ze 2/r. V' has the value V - Ze 21r p p p p p 

given in the text. 

II. CALCULATION OF THE INTEGRAL / 0 ( t'JP ). 

(Cf. REFS. 11, 12) 

We substitute into the integral (9) given in the text 
the expressions for the Coulomb functions, where 
we uzse for the hyper geometric function F ( o., y, z) 
= e F (y-o., y, - z) the representation 12: 

00 

F ("~'_ex .., _ z) = r (y) z<1-Yl/2ez \ u<Y-1-·2«l/2 }y_1 (2 y zu) e-" du . 
• ·•· r(y-a) ) 

(e) 

0 

This gives: 

00 00 

~ v 1"'d e-11 dv~ u1"'P e-u duX (u, v), (f) 
0 0 

Pere, 71 = r- r · kdlkd, ~= '+r · kdl kd (or 

71 '= r - r · k I k , I;'= r + r · k / k ) are parabolic p p p p , 

coordinates, + 2 V~'tJ cos (&p 1 2) sin (&p 12) cos cp, 



634 K. A. TI<:It-l\1AHTIROSIAN 

where cos tJ = k · kd/ k kd, m is the angle be-P P p T . 

tween the planes of the vectors kd, kP and kd, r. 

The calculation of X ( u, v) is conveniently done 
in the par abo! ic coordinates ~ Tf, cp, in which 
r = ~f( ~ + Tf), dr = rrrd ~d.,dcp/217- 2 ( ikpu e)y, 

= (a 2 + p 2 - 2a p cos ( 1T- cp)) )~, where a 

=2(ik ~u)y,cos( ~P/2),p=2(ik UTf)y, 
p p 

x sin ( tJ /2 ). According to the addition theorem: p . 

a> 

1o(2Vikpu~')= ~ ln(cr)ln(p)ein(rt-9 ), 

n--= 

so that the integration over cp in X ( u, v) gives 
simply 

2rt 

~ lo (2 Vikpu~') dcp /27t = ] 0 ( cr) ] 0 (p), 
0 

from which X (u, v) = 7t:;}J g2 , 

where 

0) 

J1 = ~ e-af.J0(cr)d; 
0 

{ ku .&1 
=(I/ a)exp - i+ cos2 -f/; 

0) 

~r2 = ~ e-a1lJo (p)l0 (2 V ikdVTJ) dTJ 
0 

1 { ku .& kvl 
=-y exp - i7 sin2 ; - i+l 

X · ( 2 Y k pk dllV . .& P ) 
lo a sm T , 

and a= ~qK - i (k + kd )]. In this integration 
- n p 

we have used the general formula: 

00 

~ e-aujm (au'I•)Jm (~u'i•)du 
0 

= _.!::_ e<"''+t>')f4aj (~) 
a m :t.ia • 

Thus 

X(u, v)= a~ exp{-i(kpu+kdv)ja} 

Substituting this value in (f), keeping in mind 
F:q. (e), and noting that 

0) 

F(a~rz) = f(~) ~ e-uu"'-1F(~, r. uz)du, 
0 

we get: 

kk .& .& where C - d P · 2 P ,.. • 2 p 
- (a+ ikd) (a+ ikp) sm 2 = "'o sm 2 • 

Substituting the value 

_(I + ")-la.p-t«~lF( . . - .., -tad, -tap, I, - C), 

we then have: 

X ( (a+ ik; (1 + ~) ) 
iiXd 

X ( a )i«PF(-irxd,-lrxp1,-~) 
\(a +ikP)(i +~> 1 +l;· · 

After some elementary transformations, one gets 
from this to the value given in the text. 
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III. TilE ASYMPTOTIC FORM OF 
I F(i ad, i aP, I,- 1,:") 12 FOR ad> I 

For ad > 1, the contour integral 

= ~ exp {1Xdl1 (u)}, dt~ 
c 2mu 

(where the contour C encircles the points + 1 and 
- 1 on the real axis) can be evaluated by the 
sadrlle-point method; the result, according to 

•. 11 
Somll'erfe ld , is 

where 

1 - P i • I 4p ( 1 )2 
uo= :r-+zv ~- -r 

solution of the equationcp'(u 0 ) = 0, 

(g) 

is the 

jcp~l=lcp"(uo)l= -( 2110 -(ii-p) 

(u~- Uo) ( ~ + uo) 

~2 V(qp/~)- (1- p)' 

p (1 + ~) 

[in the last equation we use the fact that 
I ( u 2 - uo )( uo + (-1) I = I -p ( uo + (-1) 21 

= p( 1 + () (-2 J. It is assumed throughout that 

p < 1, but since F ( i ad, iap' 1, - () is syrrmetric 

in ad awl aP, the final formula is also valid for 

p > 1. Substituting the values of I cf~ I and u0 in 

(g), and using I u 0 1 2 = p/ (and 

where t/J d and t/J P are the angles defined in (16), we 

obtain for IF ( iad, iap' 1, - () 12 the value (15) 

~iven in the text. The saddle-point method is 
applicable if 

IXc~ I cp~ I = ~2 [ ( IXaiXp I q 

- (1Xp -1Xa)2]'1• I p (1 + q > 1. 

This condition limits the values of( to those 
satisfying the inequality ( > ('given in the text. 

Translated by M. Hamermesh 
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