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Skanavi1 introduced a representation for dielectrics containing ions which may be found 
in two neighboring positions of equilibrium in the crystalline lattice, and investigated the 
losses due to transitions of these ions between the two positions of equilibrium, in weak 
electric fields. In the present article, dielectric losses due to the same mechanism in strong 
fields are investigated. Three limiting cases are considered. The results of the calcula­
tions are summarized in formulas (33)-(34), (35)-{38), and (44)-(45). 

1. GENERAL STATEMENTS 

LET the probability of transition of an ion from 
the first position of equilibrium to the second, 

or the reverse, per unit time, be vexp(-U/kT) 2 • 

In the presence of an electric field, the energy 
barrier U changes. Expanding U in a series of 
powers of the field E, we may write 

U' = U=f pE, (l) 

where the two signs refer to transitions of the ion 
in opposite directions. If n l. = n - !l n, 
n2= n + !ln are the number of wns in the two positions 

of equilibrium, per unit volume, then 

an1 = _ on2 __ , {- U-pE)_ ot ot - n11 exp kT 1 (2) 

1 U + pE} + n2 'I exp \- kT , 

and the dipole moment per unit volume is 

P = (n2 - n1) p' = 2p' An, (3) 

where p ~ p has the dimensions of a dipole moment, 
and an order of magnitude of l o-1 8• By virtue of 
Eq. (2), P satisfies the equation 

oP P- P 
(it=--.. - (4) 

where 

P- r pE__ pE 
= nptanh kT = P0tanhF , (5) 

and 

-1 - 2 -UfkT pE - -1 pE 
'C - 'le cosh kT ="o cosh7i'f · (6) 

Introducing the new variable 

1 G. I. Skanavi, Physics of Dielectrics, GITTL, 1949 
2 Ia. I. Frenkel, Kinetic Theory of Liquids, Oxford, 

1946; p 22. 

t 

& = ~ "-1 (x) dx, (7) 
0 

we obtain the solution of Eq. (4) in the form 

Let 

E = £ 0 sin wt, (9) 

and 

p£0 / kT = oc, wt =X, w"C0 = ~· (lO) 

In order to obtain the losses in the stationary 
state, we exclude the influence of the instant of 
application of the field by assuming it to have 
occurred at t = - oo, Then Eq. (8) gives 

X 

P(x) = ~0 e-&Cx) ~ e&(Y)sinh(ocsiny)dy, 

where 
X 

& (x) =+\cosh( IX sin y) dy. 
.... J 

0 

(ll) 

(12) 

Hence, it is evident that the dipole moment 
depends on the two parameters a. and {3, Eq. (l 0) 
determining the dependence of the losses on the 
field E and the frequency cu • 

As a consequence of the periodicity of the field 
the energy lost during the period T 0 is 

To 2rt 21t 

q = ~ E dP = ~ E ~~ dx = - ~ P ~: dx. 
0 0 0 

Consequently, the losses per unit time are 
21t 

Q=- ~1tE0 ~cosx·P(x)dX.· 
0 

(13) 
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In the future we will make use of the relation 

& (x + no;r) = & (x) + & (nr.), (14) 

from whkh, according to Eq. (11 ), it follows that 

P(x + no;r) (15) 

..-+nn: 
== ~0 e-& (x)-& (n:t) ~ e&(11lsinh{<X sin y) dy 

-oo 

= (-ItP(x). 

2:, LOSSES AT LOW FREQUENCIES 

The methods for calculating P(x) are somewhat 
different for f3 ~ 1 and for f3 » 1, i.e., for low 
and for high frequencies. In the first case, it is 
convenient to transform Eq. (ll) for P(x) on the 
basis of Eq. (12) for () (x): 

r 

p = ~0 e-&(.~) ~ e-& (lli{cosb(<X sin y) 
(16) 

_ e-1% sin 11} dy 
X 

= P0 [1- Te-&(x) ~ e&(11)-1%sin11dy J 
-oo 

=P0 (1 -i), 

whence, in virtue of Eq. (16), the losses are 

"' 
Q = : E0P0 ~cos xi (x) dx =: Q1 + Q2 , (l 7) 

0 

r.{2 

Q1 =: E0P0 ~ cosxi(x)dx; 
0 

"' 
Q2 = : EoPo ~ cos xi (x)dx, 

:t/2 

where 
1 (x) 

X 

=-fr ~ exp [- {&(x)- &(y) + ocsin y}]dy(18) 
-0) 

0 

__ .!_ \ exp[-{&(x)-&(x+y) 
~ ~ 00 

-oo 1 
+ oc sin (x + y)}] dy= T ~ exp [- {oc sin (x- y) 

0 
y 

+ t ~cosh[oc sin (x- z)] dz}] dy. 
0 

When ex. » 1, the integral in the braces, rapidly 
increasing with an increase of y, has primary 
importance. Therefore, for the calculation of I, 
the essential region is r « 1' and hence, z « 1. 
Expanding sin (x - y) and sin (x- z) in a series of 
powers of r and z, and limiting the series to the 
first powers, we are able to perform the integration. 
Considering on the basis of Eq. (15), the first 
half of a period (sin x > 0), denoting 

ct ·sin y = ~. oc~ cos x = '1J (19) 

and introducing the variable 

-: = C( • I cos X I . y' 

we obtain: 

(20 

1 { 1 ~ ~} i = i 1 = 'lj exp - 'ljsinh~-!; 

00 

~ exp {- fsinh(-:- ~) + "} d-:, 
0 

and if 

1 f 1 " •\ i = 12 = --:;;: exp) --:;;-sinh~- <;j 
I . ., 

00 

~ exp { ~ sinh("+~) - 1:} d-:. 
0 

It is easy to verify that when e = 0 the sum of the 
two expressions is equal to two, which corresponds 

[by Eq. (l 7)] to the condition 

P(O) + P('rc) = 0, (21) 

when x = 11/2 both expressions tend tow~d zero 
exponentially, so that the region of values of 
x ""TT/2 is nonessential, and in the future we 
exclude it from consideration. 

In order to evaluate the conditions of applicabil­
ity of the expansions in powers of r and z, which 
led to Eq. (20), it is necessary to perform the 
expansion in Eq. (18) up to the second order of the 
small quantities, and to determine the conditions 
under which the additional terms are insignificant 
in the essential region. In this way we arrive at 
the conditions: 
for ex. = pE of kT » 1 

(22) 

and for ex._$ 1 
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(23) 

3. CALCULATION OF POLARIZATION LOSSES 

Let us denote the integrals J and J 2 in Eq. 
(20) hy l 

1 = 1~ I exp {++sinh~-~} (24) 
00 

X ~ exp{-~sinh('t+E)+'t}d't. 
0 

They are calculated simply when 

111 I = a. f3 I cos X I >~< l . 
Let us consider first the case 1111 » l or 

(25) 

which is possible only when the conditions of Eq. 
(22) are fulfilled. 

Let us denote 

p =arc sinh 1111 = ln 2 I7JI, 
Z='t-p--y-~. 

(26) 

Then the expression in the exponent in Eq. (24) 
becomes 

- ~ - ~sinh('t +e) + 't 
1'1)1 -

= _ !linh(z + p) +(z + p) 
Sinh p -

=-sinh z coth p -cosh z ± (z + p). 

But when 171 I » l , coth p = l , and we get 

e-z +(z + p), 

Therefore 

1 = I! I exp { + @is~~} 

"" 
X ~ exp{-(&+z)+p}dz. 

-{;-p 

Letting e z = t, we get 

= 
11=2exp{--1-sin.b~\ S e-tdt 

i'lJI J 
e-<!!+P) 

= 2 exp (- - 1- fsu;he + _!__ e~\) 
I 'lJ I < 2 J 

= 2 exp (- 2 t'lJ 1 e~;), 

12 = 2~2 exp {I~ I sinh~} (27) 

co 

X ~ exp{-ez-z}dz. 
/;--!> 

Letting e"' = t, we get 
= 

12 = - 21
2 exp {-1-sinhe\ r e-t dt 

'lJ l'lJI J ) /2 
,l;-p 

= 1 ~ 1 expC~ 1 sinh~-E}exp[-(e~-p>]+o, 
where 0 is a term of the order l..ln 11fl· Disregard-

1/2 
ing ·the additional term, we have 

1 { 1 12 = 0iT exp - 2T1iT e~ + e}. 

Finally, disregarding the first of the quantities 
which are added in the square brackets, we find 

(28) 

Formulas (27) and (28) are unvalid only in the 
neighborhood of x =J!.., hut in this case the 

2 
integrals! 1 and! 2 tend toward zero exponentially. 

Finally, we have for 1111 » l: 

P=Po[l -2exp(- 21\ 1 e~)]. '11>0,(29) 

P = Po [I - I ~ I e--e], '11<0~ 

Let us proceed now to the case 1111 « l, i.e., 

, pE0 
IX~= kT IO'to ~ J, (30) 

which corresponds to the low frequencies, 
cu.,. 0 « 1. In this case, in the expression for!, 
Eq. (24), only small values of .,. contribute 
essentially. Expanding sinh (.,. ± ~) in a series of 
powers of .,. and integrating, we get 
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J = -1-e-~;(1 + m) 
cosh~ -cosh~ 

= __!__ 8-~; (l + cx(3 cos x) (31 ) 
cosh ~ cosh~ ' 

p (x) == p 0 {.I __ (_1_ + cx(3 cos x) e-~}. 
fOB!;~ cosh2 ~ (32) 

Now let us determine the magnitude of the 
losses. When 177 J » 1 Eq. (29) decreases 
exponentially with an increase of g = a. sin x ; 
therefore only small values of x are essential, and 
we may write 71 = a. f3 cosx "" a. {3. Introducing the 
variable sin x = t, we get 

After some simple transformations, taking into 
account e'"' >> 1, we get 

Q = . .!!!....£0P0 {- 2Ei [- -1 ]- _!_}. 
em • 2cx~i cxli 

Since, for .x « 1, 

Ei [-X] = In "(X, 

where y = ec= 1.78 (Cis Euler's constant), then 

Q = ~ E0P0 {21n 2cxf3 - _!__} 
cxn- Y cx(3 • 

Returning to the original variables, we get 
(still disregrading the second term) 

Q=2 ,,)k:n ;'tn(I.I22P:; W't0), (33) 

under the conditions: 

pEo 1 
kT > ' 

pEo 
kT W'to > I, 

arc sinh pEo (l)'t -' (nEo ) 2 
kT 1 ""' kT • (34) 

In the opposite limiting case 1771 « 1, the first 
term in Eq .. (31) when multiplied by cos x in accord­
ance with Eq. (l 7) and integrated from zero to TT 

gives zero .. This leaves only the second term: 
1t 

Q R w E' p ~ cos2 x -; d = cxi' - o o -h2~ e-~ x 
n' ,cos <., (35) 

0 

2 p'pE~ ( E ) 
:= 7t n kT w2'to/ Pk; ' 

where 
1 

{(cx) = \ e-a.x 1 /I -x2 dx (36) 
· }:oslfcxx V • 

0 

The function f(a.) decreases monotonically with 
increasing a. 

f(cx) = -i- -i when IX<.: I, 

/(cx) =!(;-I) when cx> I. (37) 

Eqs. (35)-(37) are valid under the conditions: 

(pEo/ kT)w'to <.:I, W'to ~ 1. (38) 

4. LOSSES AT HIGH FREQUENCIES 

We now return to Eqs. (11) aal (12) • 

j¥1 
2ft ~(tt~ 

I~ 
o~----~a~~~----~~~----"~~~n----~2~~---~ 

The function O(x) has the approximate form 
shown in the Figure, and the slope of the straight 
line OC is, according to Eq. (14), 

1 1 
tgcp = "i .&(1e) = 13/0 (cx), 

where I 0 ( a.) is a Bessel function with an 
imaginary argument. Therefore we can set 

1 
.&(x) = ~ / 0 (cx) x + 'f (x), 

where -'" 

'f {X)= ; ~ cosh(cx Siny) 
0 

1 
-/0 («)} dy -< f: fo (cx) 

and has a period of rr. We set 

~ &(7!) = / 0 (oc) ~ l 
7t' <il7o ' 

(39) 

(40) 

(41) 
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substitute Eq. (39) into Eq. (11) and expand in a 
series of powers of tjJ • Taking into account the 
inequalities (40) and (41), we have 

P , ) Pu I 1 I ) } \X= Texpl-(3 0 (1X x 

X 

X [ ~ exp{~I0 (1X)y}sinh(1Xsiny)dy 
-00 

X 

-tf(x) ~ exp{~10 (ex)y}sinh(a:siny)dy <42) 
co 

X 

+ ~ exp{~l0 (ex)y}·Hy)sinh(a:siny)dy] 
"' 

=== Pl + P2 + P3 • 

We develop t/J(xq) and sinh (ex. sin y) in Fourier 
series: 

Since the small parameter in the expansion 

whose square we are neglecting isl/ 0( ex.), then 
{3 

to our approximation, 

1 
Ql + Q2 + Qa = EoPow· f: /1 (a:), 

and consequently 

Q = EoPo I ( pEo) 
't'o 1 kT ' 

(44) 

co 

'P (x) =~a, sin 2nx, 
fl=] 

co 

sinh(exsiny)=~b2k+ISin(2k+ l)y, 

where 

k=o 

a,= ~ (- 1)" ~ 12n (ex), b2k+I 

= 2 (- 1)11 /211+1 (ex), 

since both functions are odd. Then the losses are 
equal to 

1t 

Q =- w2~o ~ P(x) cos xdx 
-TC 

corresponding to the three parts of Eq. (42). 
After some simple calculations we get 

under the condition 
I~(PEoJ kT) 
-----~ 1. 

(1)2't'~ 

(43) 

(45) 

From Eqs. (35) and (44) we see that, just as in 
the case of a weak field 1 , the losses increase 
with frequency at low frequencies and are independ­
ent of frequency at high frequencies. 

Translated by D. Lieberman and M. Mestchersky 
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