# Asymptotic Behavior of Electromagnetic Vacuum-Polarization in the Presence of Meson Interactions

V. B. BERESTETSKII

(Submitted to JETP editor June 23, 1954) J. Exper. Theoret. Phys. USSR 29, 585-598 (November, 1955)

It is proved that when  $e^2 \ll g^2 \ll 1$  the asymptotic form of the photon propagation function is the same as in the case  $g^2 = 0$ .

## 1. INTRODUCTION

**L**ANDAU, Abrikosov and Khalatnikov<sup>1</sup> found the asymptotic form of the photon propagation function (Green's function)  $D_{\alpha\beta}^{F'}$ . If this function is written in the transverse gauge

$$\frac{i}{2} D_{\alpha\beta}^{F'}(k) \equiv D_{\alpha\beta}(k) = \frac{1}{k^2} \left( \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2} \right) \tilde{d}_t,$$

then as proved in reference 1,

$$\tilde{d}_t^{-1} = 1 - \frac{4}{3} \varepsilon y, \tag{1}$$

with

$$y = \ln \frac{k^2}{n^2}; \quad \varepsilon = \frac{e^2}{(4\pi)^2} = \frac{1}{4\pi} \frac{1}{137}$$

Equation (1) takes into account only the interaction between a photon and the electron-positron vacuum. Landau<sup>1</sup> already observed that it must be supplemented with terms corresponding to other types of charged particle. In addition it is necessary to take account of the nonelectrodynamic interactions of these particles. Since we have at present no way to handle strong interactions, it is not, strictly speaking, possible to evaluate the effects of mesons and nucleons. It seems nevertheless interesting to consider these effects, assuming that the meson-nucleon coupling constant g is large compared with the electric charge but still small compared with 1,

$$e^2 \ll g^2 \ll 1$$

Then we may use the method of reference 1 to derive asymptotic expressions.

We shall show that, in spite of the stronger nonelectromagnetic interaction, the particles give the same contribution to the photon propagation function as if the interaction were absent, i.e., the asymptotic form of  $D_{\alpha\beta}$  is independent of g. With

the assumptions we have made, the nonelectromagnetic interaction does not produce a "form-factor" which changes the interaction of the particles with the Maxwell field.

2. When  $e^2 \ll g^2$ , we may expect that the nucleon propagation function  $S^F = (2/i)G$ , the meson function  $\Delta^F = (2/i)\Delta$ , and the vertex function  $\Gamma_5$  of the pseudoscalar meson-nucleon interaction, may be determined without considering electromagnetic interactions. The asymptotic expressions for these functions were found by Abrikosov, Galanin and Khalatnikov<sup>2</sup>, and by Galanin, Ioffe and Pomeranchuk<sup>3</sup>. They are as follows\*

$$G(p) = \frac{i\hat{p}}{p^2} b(x);$$
  

$$\Delta(p) = \frac{1}{p^2} c(x),$$
  

$$\Gamma_5(p; 0) = \Gamma_5(0; p) = \Gamma_5(p; p) = \gamma_5 a(x),$$
(2)

with  $x = \ln (p^2/m^2)$ . Explicit expressions for a(x), b(x) and c(x) are given in references 2 and 3, but are not needed here.

The calculations can be done in two different ways. One may operate with unrenormalized functions  $d_t$ , a, b, c etc. and then renormalize the final expressions<sup>1</sup>,<sup>2</sup>. Or one may renormalize the starting equations.<sup>3</sup> and then operate only with renormalized functions (we denote these by  $d_t$ , betc). It is easy to show that the two methods are

etc). It is easy to show that the two methods are equivalent, since the transition from unrenormalized to renormalized functions can be made at any stage of the calculation.

We shall use the first method since it is more convenient. In the divergent integrals we cut off 2 -2 -2

\* We use the following notations:  $p^2 = p^2 - p_0^2$ ;

$$\hat{\mathbf{p}} = \sum_{\alpha=1}^{4} \gamma_{\alpha} p_{\alpha}; \ \gamma_{j} = -i \beta_{\alpha} \text{ for } j = 1, 2, 3; \ \gamma_{4} = \beta ,$$
  
$$\gamma_{5} = \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} (\gamma_{5}^{2} = 1); \ \Gamma_{5} (p; k) \equiv \Gamma_{5} (p, p - k; k)$$

with p the nucleon and k the meson momentum. We use Heaviside units for e and g and set  $\hbar = c = 1$ .

<sup>2</sup> A. A. Abrikosov, A. D. Galanin and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR **97**, 793 (1954).

<sup>3</sup> A. D. Galanin, B. L. Ioffe and I. Ia. Pomeranchuk, J. Exper. Theoret. Phys. USSR **29**, 51 (1955); Soviet Phys. **2**, 37 (1956)

<sup>&</sup>lt;sup>1</sup> L. D. Landau, A. A. Abrikosov and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR **95**, 497, 1177 (1954)

the range of the logarithmic variable x with an upper limit L which will disappear from the results after renormalization. The renormalized quantities are defined by the requirement that for x = 0 they become equal to the corresponding free-particle propagation functions, i.e., the normalized functions b(x),  $d_t(x)$  etc. are equal to unity at x = 0.

$$\widetilde{d}_t(x) = \frac{d_t(x)}{d_t(0)}; \qquad (3)$$

$$\widetilde{a}(x) = \frac{a(x)}{a(0)}; \ \widetilde{b}(x) = \frac{b(x)}{\iota(0)}; \ \widetilde{c}(x) = \frac{c(x)}{c(0)} (3a)$$

The renormalization of electric charge and of the meson-nucleon coupling constant are defined as follows:

$$e_{\perp}^{\mathbf{2}} \boldsymbol{d}_{t}(0) = e^{\mathbf{2}}; \tag{4}$$

$$g_1^2 a^2(0) b^2(0) c(0) = g^2, \qquad (4a)$$

where  $e_1$  and  $g_1$  are the unrenormalized, e and g the renormalized constants<sup>+</sup>.

#### 2. INTERACTION WITH NEUTRAL MESONS

1. We consider protons interacting with the Maxwell field  $A_{\alpha}$  and with a neutral meson field  $\varphi$ . In the Lagrangian of the system the interactions are represented by the following terms (the meson interaction being pseudoscalar)

$$U_1 = ig_1 \overline{\psi} \gamma_5 \psi \varphi, \qquad U_2 = ie_1 \overline{\psi} \gamma_\alpha \psi A_\alpha$$

The electromagnetic polarization of the proton vacuum is represented by the graph shown in Fig.



1. The wiggly lines denote the propagation of photons, the continuous lines denote protons. The propagation of the protons here includes

FIG. 1 the meson-proton interaction. The ordinary vertex denotes a matrix  $\gamma_{\alpha}$ ; the 'blob'' vertex denotes a function  $\Gamma_{\beta}$ , the vertex function describing the interaction of a proton with the Maxwell field in the presence of the meson interaction. The vacuum-polarization tensor  $P_{\alpha\beta}$ corresponding to Fig. 1 has the following form\*\*

$$P_{\alpha\beta}(k)$$

$$= \frac{ie_1^2}{(2\pi)^4} \int \operatorname{Sp} \gamma_{\alpha} G(p) \Gamma_{\beta}(p; k) G(p-k) d^4k.$$
(5)

The function G(p) has the form (2), while  $\Gamma_{\beta}$  is determined by the integral equation

$$\Gamma_{\beta}(p; k) = \gamma_{\beta} + \frac{ig_1^2}{(2\pi)^4} \int \Gamma_5(p; p-q)$$

$$\cdot \qquad \times G(q) \Gamma_{\beta}(q; k) G(q-k)$$

$$\times \Gamma_5(q-k; q-p) \Delta(p-q) d^4q.$$
(6)

Eq. (6) is represented graphically in Fig. 2. The dotted line denotes a



meson<sup>+</sup>, and the vertices with dotted lines incident denote the vertex function  $\Gamma_5$ . Eq. (6) is valid

for  $g^2 x < 1$ . We as-

sume also  $e^2 x \ll 1$ , i.e., perturbation theory is valid for the electromagnetic interaction.

Since the integral in Eq. (5) diverges for large p, we separate the integrand into terms of various orders in (k/p). Then G(p - k) and  $\Gamma_{\beta}(p,k)$  take the form

$$G(p-k) = G(p) + G^{(1)}(p, k) + G^{(2)}(p, k),$$
(7)

$$\Gamma_{\beta}(p; k) = \Gamma_{\beta}^{(0)}(p) + \Gamma_{\beta}^{(1)}(p; k) + \Gamma_{\beta}^{(2)}(p, k).$$

According to Eq. (2)

$$G(p) = ib (x) (\hat{p} / p^2),$$

$$G^{(1)}(p, k) = ib (x) (\hat{p} \hat{k} \hat{p} / p^4),$$

$$G^{(2)}(p, k) = ib (x) (\hat{p} \hat{k} \hat{p} \hat{k} \hat{p} / p^6).$$
(8)

We may write for  $\Gamma_{\beta}^{(0)}$ 

$$\Gamma_{\beta}^{(0)} = \gamma_{\beta} \xi(x), \qquad (9)$$

<sup>+</sup> Eq. (3), (3a), (4), (4a) coincide with the usual renormalization conditions of Dyson<sup>4</sup>. Because of the introduction of the cutoff *L*, the renormalization constants  $Z_1$ ,  $Z_2$ ,  $Z_3$  here become functions of *L*. In electrodynamics  $Z_3(L) = d_t(0)$ ;  $Z_1 = Z_2 = 1$ . In meson theory  $Z_3(L) = c(0)$ ;  $Z_2(L) = b(0)$ ;  $Z_1^{-1}(L) = a(0)$ .

<sup>&</sup>lt;sup>4</sup> F. J. Dyson, Phys. Rev. 75, 1736 (1949).

<sup>\*\*</sup>  $P_{\alpha\beta}$  is defined in such a way that the Dyson-Schwinger equation for the photon Green's function  $D_{\alpha\beta}$  takes the form  $(-\Box + P)D = 1$ .

<sup>+</sup> Equation (6) is obtained from Fig. 2 by first writing down the scattering matrix by the ordinary rules of perturbation theory, going as far as third-order terms, and then substituting  $\Gamma_5$  for  $\gamma_5$ , (2/i)G for  $S^F$ , and  $(2/i)\Delta$  for  $\Delta^F$ .

while  $\Gamma_{\beta}^{(1)}$  and  $\Gamma_{\beta}^{(2)}$  consist of slowly varying functions of  $x = \ln (p^2/m^2)$  and  $y = \ln(k^2/m^2)$ , multiplied by (k/p) and by  $(k/p)^2$  respectively. The structure of these functions will be discussed in detail later. Substituting Eq. (7) into (5) we obtain

$$P_{\alpha\beta}(k) = \frac{ie_1^2}{(2\pi)^4} \int \gamma_{\alpha} G(p) \left[ \Gamma_{\beta}^{(0)}(p) G(p) + \Gamma_{\beta}^{(0)}(p) G(p) + \Gamma_{\beta}^{(0)}(p) G^{(1)}(p, k) + \Gamma_{\beta}^{(1)}(p, k) G(p) + \Gamma_{\beta}^{(1)}(p, k) G^{(1)}(p, k) + \Gamma_{\beta}^{(0)}(p) G^{(2)}(p, k) + \Gamma_{\beta}^{(2)}(p, k) G(p) + \dots \right] d^4p.$$

Here the first (quadratically divergent) term is independent of k and must be removed by the usual appeal to gauge-invariance. The next two terms contain odd powers of the vector  $p_{\infty}$  and therefore vanish after integration<sup>+</sup>. The remaining terms are logarithmically divergent. The higher terms in the expansion in powers of (k/p), which are here omitted, would give convergent integrals and therefore are negligible in the asymptotic region.

2. We observe that  $\Gamma_{\sigma}^{(0)}(p) = \Gamma_{\sigma}(p; 0)$  can be immediately fixed by Ward's identity<sup>5</sup>, which states that

$$\Gamma_{\sigma}(p; 0) = i \frac{\partial G^{-1}(p)}{\partial \rho_{\sigma}}.$$

With Eq. (2) this gives

$$\Gamma_{\sigma}^{(0)}(p) = \frac{1}{b(x)} \gamma_{\sigma}$$

or by comparison with Eq. (9)

$$\xi(x) = 1 / b(x). \tag{10}$$

However, we shall also derive equations which determine  $\xi$  directly from Eq. (6), since this is necessary for the later work.

We substitue Eqs. (7), (8), (9) into (6). This gives three equations, of degrees zero, one and two in k. The zero-order equation is

$$\gamma_{\sigma}\xi(x) = \gamma_{\sigma} + \frac{ig_1^2}{(2\pi)^4} \int \Gamma_5(p; p-q) b(z) \frac{i\hat{q}}{q^2}$$
$$\times \xi(z) \gamma_{\sigma} b(z) \frac{i\hat{q}}{q^2} \Gamma_5(q-k; q-p)$$
$$\times \Delta(p-q) d^4q \qquad \left(z = \ln \frac{q^2}{m^2}\right)$$

The last integral diverges logarithmically at large q, hence we may neglect  $k^2$  and  $p^2$  in it in comparison with  $q^2$ , and set the lower limit of integration at  $q^2 = p^2(k^2 \ll p^2)$ . Then using Eq. (2) we obtain

$$\xi(x) \gamma_{\sigma} = \gamma_{\sigma} + \frac{iq_1}{(2\pi)^4}$$

$$\times \int_{q^3 > p^4} a^2(z) b^2(z) c(z) \xi(z) \gamma_5 \frac{\hat{iq}}{q^2} \gamma_{\sigma} \frac{\hat{iq}}{q^2} \gamma_5 \frac{d^4q}{q^2}.$$
The intermed of Eq. (11) may be simplified

The integrand of Eq. (11) may be simplified. Since  $\gamma_5$  anticommutes with  $\hat{q}$  and  $\gamma_{\sigma}$ ,

$$\dot{\gamma}_5 \, i \hat{q} \gamma_{\sigma} i \hat{q} \gamma_5 = \hat{q} \gamma_{\sigma} \hat{q}.$$

By rotating the  $q_4$  axis through an angle  $\pi/2$  in the complex plane (see reference 1), we bring the integral into a euclidean space in which the averaging over angles is simple and gives

$$q_{\alpha} q_{\beta} = \frac{1}{4} q^2 \delta_{\alpha\beta},$$

i.e.

$$\overline{\hat{\mathbf{q}}\,\gamma_{\sigma}\,\mathbf{q}}^{-1/_{4}}\,q^{2}\gamma_{lpha}\gamma_{\sigma}\gamma_{lpha}=-\frac{1/_{2}}{2}\,q^{2}\gamma_{\sigma}$$

Then we write for the volume-element

$$d^{\dot{a}}q = i\pi^2 q^4 dz \qquad \left(z = \ln \frac{q^2}{m^2}\right), \quad (12)$$

and Eq. (9) takes the form

$$\xi(x) = 1 + \frac{\lambda_1}{2} \int_{x}^{L} a^2(z) b^2(z) c(z) \xi(z) dz, (13)$$

with

$$\lambda_1 = g_1^2 / (4\pi)^2$$
.

3. The equation of first degree in k obtained from (6) is the following

<sup>&</sup>lt;sup>+</sup> These terms depend linearly on  $k_{\alpha}$ , and it is clear that the tensor  $P_{\alpha\beta}$  cannot be a linear function of  $k_{\alpha}$ .

<sup>&</sup>lt;sup>5</sup> J. C. Ward, Phys. Rev. **78**, 182 (1950); A. Salam, Phys. Rev. **79**, 910 (1950); N. M. Kroll and M. A. Ruderman, Phys. Rev. **93**, 233 (1954).

$$\Gamma_{\sigma}^{(1)}(p, k) = \frac{ig_1^2}{(2\pi)^4} \int \Gamma_5(p; p-q) b(z) \frac{i\hat{q}}{q^3} \Big[ \xi(z) \gamma_{\sigma} b(z) \frac{i\hat{q} \hat{k} \hat{q}}{q^4} \\ + \Gamma_{\sigma}^{(1)}(q, k) b(z) \frac{i\hat{q}}{q^2} \Big] \Gamma_5(q-k; q-p) \Delta(p-q) d^4q.$$

This integral converges for  $q^2 \gg p^2$ . The important range of integration is  $k^2 < q^2 < p^2$  (the situation is exactly the same as in reference 1

when  $k^2 \ll p^2$ ). Hence in the integrand we may neglect k and q compared with p. Then using Eq. (2) we find

$$\Gamma_{\sigma}^{(1)}(p, k) - \frac{ig_{1}^{2}}{(2\pi)^{4}} \frac{a^{2}(x)c(x)}{p^{2}} \int_{k^{3} < q^{3} < p^{3}} b^{2}(z) \gamma_{5} \frac{i\hat{q}}{q^{2}} \Gamma_{\sigma}^{(1)}(q, k) \frac{i\hat{q}}{q^{2}} \gamma_{5} d^{4}q$$

$$= \frac{ig_{1}^{2}}{(2\pi)^{4}} \frac{a^{2}(x)c(x)}{p^{2}} \int_{k^{3} < q^{3} < p^{3}} b^{2}(z)\xi(z) \gamma_{5} \frac{i\hat{q}}{q^{2}} \gamma_{\sigma} \frac{i\hat{q}\hat{k}\hat{q}}{q^{4}} \gamma_{5} d^{4}q.$$

The inhomogeneous term on the right of this linear integral equation contains an odd power of q in the integrand and therefore vanishes. So the equation is homogeneous and implies <sup>++</sup>

$$\Gamma_{\sigma}^{(1)}(p, k) = 0.$$
(14)

4. The equation of second degree in k obtained from Eq. (6) takes the following form after using Eqs. (14), (8) and (9):

$$\Gamma_{\sigma}^{(2)}(p, k) = \frac{ig_1^2}{(2\pi)^4} \int \Gamma_5(p; p-q) b(z) \frac{i\hat{q}}{q^2} \bigg[ \xi(z) \gamma_{\sigma} b(z) \frac{i\hat{q} \hat{k} \hat{q} \hat{k} \hat{q}}{q^6} + \Gamma_{\sigma}^{(2)}(q, k) b(z) \frac{i\hat{q}}{q^2} \bigg] \Gamma_5(q-k; q-p) \Delta(p-q) d^4q.$$

In this integral the important range is again  $k^2$ 

$$< q^2 < p^2$$
 Hence using (2) we obtain

$$\Gamma_{\sigma}^{(2)}(p, k) - \frac{ig_1^2}{(2\pi)^4} \frac{a^2(x) c(x)}{p^2} \int_{k^3 < q^3 < p^3} b^2(z) \gamma_5 \frac{i\hat{q}}{q^2} \Gamma_{\sigma}^{(2)}(q, k) \frac{i\hat{q}}{q^2} \gamma_5 d^4 q$$

$$= \frac{ig_1^2}{(2\pi)^4} \frac{a^2(x) c(x)}{p^3} \int_{k^3 < q^3 < p^3} b^2(z) \xi(z) \gamma_5 \frac{i\hat{q}}{q^2} \gamma_{\sigma} \frac{i\hat{q}\hat{k}\hat{q}\hat{k}\hat{q}}{q^6} \gamma_5 d^4 q.$$
(15)

We evaluate the right side Eq. (15). First we remove the matrix  $\gamma_5$  as before

$$\gamma_{\mathfrak{s}} i \hat{q} \gamma_{\mathfrak{s}} \, i \hat{q} \, \hat{k} \hat{q} \hat{k} \, \hat{q} \, \gamma_{\mathfrak{s}} = \hat{q} \gamma_{\mathfrak{s}} \hat{q} \, \hat{k} \hat{q} \hat{k} \, \hat{q}.$$

Next an averaging over angles gives\*

$$\frac{q_{\alpha}q_{\beta}q_{\gamma}q_{\delta}}{B} = Bq^{4} \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma}\right), \quad (16)$$

$$B = \frac{1}{24}$$

<sup>++</sup> In the equation for  $\Gamma_{\sigma}^{(1)}$  there are terms of order  $k/p^2$  but none of order k/p, and the higher terms in the development of  $\Gamma_5$  and  $\Delta$  also give extra powers of (1/p). From this it is obvious that the first-order term is absent in the expansion of  $\Gamma_{\sigma}$  in powers of (k/p).

\* The form of Eq. (16) follows from considerations of symmetry. The value of *B* is easily obtained as follows. Since  $q_1^4 = q^4 3B$ ;  $q_1^2 q_2^2 = q_1^2 q_3^2 = q_1^2 q_4^2 = B q^4$ , we have  $\overline{q_1^2 q^2} = 6B q^4$ . But  $\overline{q_1^2} = \frac{1}{4} q^2$ , hence B = 1/24. and therefore

$$\overline{\hat{q}\gamma_{\sigma}\hat{q}\hat{k}\hat{q}\hat{k}\hat{q}} = \frac{1}{3}q^{4} (k^{2}\gamma_{\sigma} - \hat{k}k_{\sigma})$$

Substituting this into Eq. (15), we reduce the right side to the form

$$-\frac{\lambda_{1}}{3} - \frac{k^{2} \gamma_{\sigma} - \hat{k} k_{\sigma}}{\mu^{2}} a^{2}(x) c(x) \int_{y}^{x} b^{2}(z) \xi(z) dz.^{(17)}$$

From Eq. (17) it is clear that we should look for a solution  $\Gamma_{\sigma}^{(2)}(p,k)$  of the form

$$\Gamma_{\sigma}^{(2)}(p, k) = \frac{1}{3} \frac{k^{2} \gamma_{\sigma} - \hat{k} k_{\sigma}}{p^{2}} s(x, y) \quad (18)$$
$$\left(x = \ln \frac{p^{2}}{m^{2}}; \quad y = \ln \frac{k^{2}}{m^{2}}\right)$$

Substituting Eq. (18) into (15) and using the same arguments which we applied in the derivation of Eq. (17), we find

$$s(x, y) = -\frac{\lambda_1}{2} a^2(x) c(x) \int_{y}^{x} b^2(z) [\xi(z) - s(z, y)] dz.$$
(19)

5. We substitute Eqs. (7), (8), (9), (14) and (18) into the expression (6) for the polarization tensor, carry out the angular integrations, and introduce logarithmic variables. The result is

$$P_{\alpha\beta}(k) = \frac{4}{_3} \varepsilon_1 \left( k^2 \delta_{\alpha\beta} - k_{\alpha} k_{\beta} \right) \int_y^L b^2(x) \left[ \xi(x) - s(x, y) \right] dx,$$

with

$$\varepsilon_1 = e_1^2 / (4\pi)^2$$

or alternatively<sup>+</sup>

$$d_t^{-1}(y) = 1 + \frac{4}{3} \varepsilon_1 \int_y^z b^2(x) [\xi(x) - \xi(x, y)] dx$$
(20)

Comparing Eqs. (20) and (19), we see that the

function  $d_t^{-1}(y)$  is simply related to s(x,y). If we write

$$s(x, y) = -\frac{\lambda_1}{2} a^2(x) c(x) q(x, y), \quad (21)$$

then

$$d_t^{-1}(y) = 1 + \frac{4}{3} \varepsilon_1 q (L, y).$$
 (22)

By Eqs. (21) and (19), the function q(x, y) satisfies the equation

$$q(x, y) \tag{23}$$

$$= \int_{y}^{x} b^{2}(z) \left[ \xi(z) + \frac{\lambda_{1}}{2} a^{2}(z) c(z) q(z, y) \right] dz.$$

"We observe that if at this point we carry out the renormalization according to Eqs. (3), (3a), (4), (4a), then Eq. (20) and (10) give

$$\widetilde{d}_{t}^{-1}(y) = 1 + \frac{4}{3} \varepsilon Z_{1}^{\prime} \left\{ \int_{y}^{L} l^{2}(x) [\widetilde{\xi}(x) - \widetilde{s}(x, y)] dx - \int_{0}^{L} \widetilde{b}^{2}(x) [\xi(x) - \widetilde{s}(x, 0)] dx \right\},$$

with

$$b (x) = b (0) \tilde{b} (x); \ \xi (x) = \xi (0) \tilde{\xi} (x);$$
  

$$s (x, y) = \xi (0) \tilde{s} (x, y);$$
  

$$Z'_{1} = \frac{1}{\xi (0)} = \tilde{\xi} (L) = Z_{2} = b (0)$$
  
Compare the analogous expressions in reference 3

are the analogous expressions in reference 3.

The integral equation (23) can be transformed into a differential equation by differentiating it with respect to x. This gives

$$\frac{\partial q(x, y)}{\partial x} = b^2(x) \left[ \xi(x) + \frac{\lambda_1}{2} a^2(x) c(x) q(x, y) \right]$$
(24)

with the initial condition

$$q(x, x) = 0. \tag{24a}$$

We combine Eq. (24) with the differential equation for  $\xi(x)$  obtained by differentiating Eq. (13),

$$\frac{d\xi(x)}{dx} = -\frac{\lambda_1}{2} a^2(x) b^2(x) c(x) \xi(x), \quad (25)$$

with the boundary condition

$$\xi(L) = 1. \tag{25a}$$

We multiply Eq. (24) by  $\xi(x)$ , Eq. (25) by q(x, y), and add. The result is

$$\frac{\partial}{\partial x} [\xi(x) q(x, y)] = b^2(x) \xi^2(x)$$

and hence by Ward's identity (10)

$$\frac{\partial}{\partial x} [\xi(x) q(x, y)] = 1.$$
<sup>(26)</sup>

The constant  $\lambda_1$  does not occur in this equation. Using the boundary condition (24a), we obtain from Eq. (26)

$$\xi(x) q(x, y) = x - y.$$
 (27)

The boundary condition (25a) now gives

$$q\left(L,y\right)=L-y$$

and hence by Eq. (22)

$$d_t^{-1} = 1 + \frac{4}{2} \varepsilon_1 (L - y). \tag{28}$$

After renormalizing by the rules described in references 3 and 4, Eq. (28) is transformed into Eq. (1), and this completes the proof of the assertion made at the beginning of this paper.

6. The results which have been obtained can be extended to the case of interaction with a scalar neutral field. In this case the interaction operator takes the form  $U_1 = g_1 \overline{\psi} \psi \varphi$ , i.e. it differs from the pseudoscalar interaction by changing  $i\gamma_5$  into 1. But we have seen that the matrices  $\gamma_5$  appeared in our equations in pairs, separated by an odd number of matrices  $\gamma_{\alpha}$ . Therefore

$$i\gamma_5(\ldots)i\gamma_5=1(\ldots),$$

i.e., the equations for both cases are identical. The same is true for the asymptotic forms of the

functions a(x), b(x) and c(x) obtained in references 2 and 3. They also remain unchanged for a scalar field. In general, the difference between scalar and pseudoscalar fields cannot appear in effects for which the nucleon mass is negligible. This follows from the fact that there exists only one type of Dirac particle with m = 0, whereas with finite *m* there are two types of particles with different parity properties.

### 3. INTERACTION WITH A SYMMETRIC MESON FIELD

1. In the case of a symmetric meson field, the interaction operators are  $U_1$  between nucleon and meson,  $U_2$ , between nucleon and photon, and  $U_3$ between meson and photon, as follows:

$$U_{1} = ig_{1}\overline{\psi}\gamma_{5}\tau_{j}\psi\varphi_{j}.$$

$$U_{2} = ie_{1}\overline{\psi}\gamma_{\sigma}\frac{1-\tau_{3}}{2}\psi A_{\sigma},$$

$$U_{3} = ie_{1}\varphi_{j}T_{3,jh}\frac{\partial}{\partial x_{\alpha}}\varphi_{h}A_{\alpha}.$$
(29)

Here  $\tau_i$  is the isotopic spin operator for the nucleon (a Pauli matrix),  $\varphi_i$  is the meson field (a vector in 3-dimensional isotopic space), and  $T_i$  is the isotopic spin operator for the meson,

$$T_{i,jh} = -ie_{ijh}$$

where  $e_{ijk}$  is the unit antisymmetric tensor. As before we assume  $e_1^2 \ll g_1^2$  and suppose that the nucleon and meson propagation functions and the meson-nucleon vertex function depend only on the interaction  $U_1$ . They have the same form (2) as in the case of the neutral field, but with different functions a(x), b(x) and c(x) (see references 2 and 3). We keep the same notations for these functions, since we do not use their explicit forms. But the vertex functions of the nucleon-photon and mesonphoton interactions must be investigated afresh.

Denoting them by  $\Gamma_{\sigma}$  and  $V_{\sigma}$  respectively, we may write the vacuum-polarization tensor in the following general form

$$P_{\alpha\beta}(k)$$
(30)  
=  $\frac{ie_1^2}{(2\pi)^4} \int \operatorname{Sp} \gamma_{\alpha} \frac{1-\tau_3}{2} G(p) \Gamma_{\beta}(p; k) G(p-k) d^4 p$   
-  $\frac{ie_1^2}{(2\pi)^4} \int \operatorname{Sp} i (2p_{\alpha}-k_{\alpha}) T_3 \Delta(p) V_{\beta} \Delta(p-k) d^4 p.$ 

The first term in Eq. (30) comes from nucleons (Fig. 1), the second from mesons (Fig. 3).



The minus sign in the second term is connected with the Bose statistics of the mesons. The operations Sp act both on the

FIG.3 Dirac matrices (in the first term) and on the isotopic spin matrices (in both terms). The factor  $i(2p_{\alpha} - k_{\alpha})$  is the Fourier transform of the operator  $(\partial/\partial x_{\alpha}).$ 

The vertex parts  $\Gamma_{\!\sigma}$  and  $V_{\sigma}$  satisfy integral equations which are represented graphically\* in Figs. 4 and 5. As before, the wiggly lines denote photons,





the dotted lines mesons, and the continuous lines nucleons. The "blob" vertices denote functions  $\Gamma_\sigma \text{ or } \boldsymbol{V}_\sigma$  , the vertices without a photon line denote  $\Gamma_5 \tau_{\mathbf{x}}$  , and the ordinary vertices with a  $1 - \tau_{0}$ 

photon line denote 
$$-\frac{1}{2}\gamma_{\sigma}$$
 or  $i(2p_{\sigma}-k_{\sigma})T_{3}$ .

The graphs of Fig. 4 produce the equation

$$\Gamma_{\sigma}(p; k) = \gamma_{\sigma} + \frac{ig_1^2}{(2\pi)^4} \int \tau_j \Gamma_5(p; p-q)$$

$$\times \quad G(q) \quad \Gamma_{\sigma}(q; k) \quad G(q-k)$$

$$\times \quad \Gamma_5(q-k; q-p) \quad \tau_j \Delta(p-q) \quad d^4q$$

$$+ \frac{ig_1^2}{(2\pi)^4} \int \Gamma_5(p; l) \quad G(p-l) \quad \Gamma_5$$

$$\times \quad (p-l; k-l) \quad \Delta(l) \quad \tau_j V_{\sigma, jk} \quad \tau_k \quad \Delta(l-k) \quad d^4l$$

\* In Figs. 4 and 5 we retain those graphs which in perturbation theory (i.e. when the equations are solved by iteration ) give terms with asymptotic behavior  $(g_1^2)^n L^n$ , and we drop (considering  $g_1^2$  to be small) those graphs which lead to asymptotic behavior  $(g_1^2)^n L^m$  with n > m. But the graph of Fig. 5 actually belongs to the latter class. Graphs containing squares of nucleon lines (which are unrenormalizable by the

usual methods) do not need to be considered in this

problem.

and those of Fig. 5 produce the equation  

$$V_{\sigma,jk}(q;k) = i (2q_{\sigma} - k_{\sigma}) T_{3,jk} + \frac{ig_1^2}{(2\pi)^4} \int \operatorname{Sp} G(f) \Gamma_{\sigma}(f;k) G(f-k) \times [\Gamma_5(f-k;q-k) G(f-k) \Gamma_5(f-k)] + \Gamma_5(f-k;q-k) G(f-k) \Gamma_5(f-k;q-k) G(g-k) + Q(g-k) + Q(g$$

In Eq. (32) the two terms of the integrand correspond to the two directions in which the triangular loop in Fig. 5 can be described. In the case of neutral mesons, the expression corresponding to this closed loop vanishes because of the conservation of charge-parity (Furry's theorem), since a neutral spin-zero meson has even charge-parity. Hence it is clear that the isotopic spin dependence of the vertex-function  $V_{\sigma}$  must be given by

$$V_{\sigma} = T_{3} Z_{\sigma}, \tag{33}$$

where  $Z_{\sigma}$  does not involve isotopic spin matrices. The vertex function  $V_{\sigma}$  will be written in the form

$$\Gamma_{\sigma} = \frac{1}{2} \left( X_{\sigma} - \tau_3 Y_{\sigma} \right), \tag{34}$$

where  $X_{\sigma}$  and  $Y_{\sigma}$  contain no isotopic spin matrices.

Substituting Eqs. (33) and (34) into (31) and (32) and using the relations

$$\begin{aligned} \tau_j \tau_j &= 3; \ \tau_j \tau_3 \tau_j = -\tau_3; \\ \tau_j T_3 \tau_j &= 2\tau_3; \\ \text{Sp } \tau_j \tau_k &= 2\delta_{jk}; \ \text{Sp } T_3 \tau_j \tau_k = -2T_{3,jk}, \end{aligned}$$

we eliminate the isotopic spin variables and obtain equations for  $X_{\sigma}$ ,  $Y_{\sigma}$  and  $Z_{\sigma}$ :

$$X_{\sigma}(p, k) = \gamma_{\sigma}$$

$$+ \frac{3i\rho_{1}^{2}}{(2\pi)^{4}} \int \Gamma_{5}(p; p-q) G(q) X_{\sigma}(p, k)$$

$$\times G(q-k) \Gamma_{5}(q-k; q-p) \Delta(p-q) d^{4}q;$$

$$Y_{\sigma}(p, k) = \gamma_{\sigma}$$
(36)

$$-\frac{i\rho_1^2}{(2\pi)^4}\int \Gamma_5(p;p-q)G(q)Y_{\sigma}(q,k)G(q-k)$$

$$\times \Gamma_5(q-k;q-p)\Delta(p-q)d^4q$$

$$+4i\frac{\rho_1^2}{(2\pi)^4}\int \Gamma_5(p;l)G(p-l)\Gamma_5(p-l;k-l)$$

$$\times \Delta(l)Z_{\sigma}(l,k)\Delta(l-k)d^4l;$$

$$Z_{\sigma}(q, k) = i (2q_{\sigma} - k_{\sigma})$$

$$- \frac{ig_{1}^{2}}{(2\pi)^{1}} \int \operatorname{Sp} G(f) Y_{\sigma}(f, k) G(f - k)$$

$$\times [\Gamma_{5}(f - k; q - k) G(f - k)$$

$$\times \Gamma_{5}(f - q; -q) - \Gamma_{5}(f - k; -q)$$

$$\times G(f - k + q) \Gamma_{5}(f - k + q; q)] d^{4}f.$$
(37)

This system separates into Eq. (35) determining  $X_{\sigma}$ , and the simultaneous Eqs. (36) and (37) determining  $Y_{\sigma}$  and  $Z_{\sigma}$ . 2. Eq. (35) differs from Eq. (6) only by a

2. Eq. (35) differs from Eq. (6) only by a numerical coefficient, and can be solved by precisely the same method. Expanding  $X_{\sigma}$  by powers of k

$$X_{\sigma}(p, k) = X_{\sigma}^{(0)}(p) + X_{\sigma}^{(1)}(p, k) + X_{\sigma}^{(2)}(p, k),$$

we obtain

2

$$X_{\sigma}^{(0)} = \xi(x) \gamma_{\sigma}; \ \xi(x) = \frac{1}{b(x)} \left( x = \ln \frac{p^2}{m^2} \right),$$
  

$$X_{\sigma}^{(1)} = 0,$$
  

$$X_{\sigma}^{(2)} = \frac{k^2 \gamma_{\sigma} - \hat{k} k_{\sigma}}{p^2} s(x, y)$$
(38)

$$= -\lambda a^{2}(x) c(x) q(x, y),$$

where  $\xi(x)$  and q(x, y) satisfy

$$\xi(x) = \frac{3}{2} \lambda_1 \int_x^L a^2(z) b^2(z) c(z) \xi(z) dz + 1,$$

$$q(x, y) = \int_y^x b^2(z) [\xi(z) + \frac{3}{2} \lambda_1 a^2(z) c(z) q(z, y)] dz.$$
(39)

Transforming Eq. (37) into a differential equation, and using Ward's identity, we obtain the analog of Eq. (26)

$$\frac{\partial}{\partial x} [\xi(x) q(x, y)] = 1,$$
  

$$\xi(x) q(x, y) = x - y.$$
(40)

3. We determine  $Y_{\sigma}$  and  $Z_{\sigma}$  in a similar way by first expanding them in powers of k,

$$Y_{\sigma} = Y_{\sigma}^{(0)} + Y_{\sigma}^{(1)} + Y_{\sigma}^{(2)},$$
  

$$Z_{\sigma} = Z_{\sigma}^{(0)} + Z_{\sigma}^{(1)} + Z_{\sigma}^{(2)},$$
(41)

By virtue of Ward's identity and Eq. (2),  $Y^{(0)}_{\sigma}$  and  $Z^{(0)}_{\sigma}$  are given by

$$Y_{\sigma}^{(0)} = i \frac{\partial G^{-1}(p)}{\partial p_{\sigma}} = \eta(x) \gamma_{\sigma}; \qquad (42)$$

$$\eta(x) = \xi(x) = 1 / b(x); \qquad (42a)$$

$$Z_{\sigma}^{(1)} = i \frac{\partial \Delta^{-1}(p)}{\partial p_{\sigma}} = 2 i p_{\sigma} \zeta(x); \qquad (43)$$

$$\zeta(x) = 1 / c(x).$$
 (43a)

The structure of the quantities  $Y_{\sigma}^{(1)}$ ,  $Y_{\sigma}^{(2)}$ ,  $Z_{\sigma}^{(1)}$ 

 $Z_{\sigma}^{(2)}$  can be determined (as in Section 2) by an explicit calculation of the inhomogeneous terms in the equations which are obtained by substituting Eq. (41) into (36) and (37). When this is done, the factor  $Y_{\sigma}(f,k) G(f-k)$  in the integrand of Eq. (37) must be expanded as far as terms of order  $k^2/p^2$ . In the first integral of Eq. (36) the product  $Y_{\sigma}(q, k) G(q-k)$  must be expanded to order  $(k^2/q^2)$ ; in the second integral the factors  $Z_{\sigma}(l-k) \Delta (l-k)$  must be expanded to order  $(k^2/l^2)$  and the factor G(p-l) to order (l/p). The last remark is connected with the fact that if we retained only  $G^{(0)}(p-l) = G(p) \sim (1/p)$ , we should obtain an integrand proportional to an odd power of the vector  $l_{\sigma}$  and the integral would vanish. Unlike

the nucleon vertex operator  $\Gamma_{\sigma}$ , the meson vertex operator  $V_{\sigma}$  depends linearly on  $l_{\sigma}$  in the zeroorder approximation. The next term in the expansion is  $G^{(1)}(p,l) \sim (l/p^2)$  and leads to a logarithmic integral  $[\int \dots d^4l/l^4]$  with a coef-

ficient proportional to  $(k^2/p^2)$ . When this program is carried through, we obtain

$$Z_{\sigma}^{(1)}(p, k) = -ik_{\sigma},$$

$$Y_{\sigma}^{(1)}(p, k) = \frac{\hat{p} k_{\sigma}}{p^2} r(x, y);$$

$$Y_{\sigma}^{(2)}(p, k) = \frac{k^2}{p^2} \gamma_{\sigma} u_1(x, y) + \frac{k^2 \hat{p} \gamma_{\sigma} \hat{p}}{p^4} v_1(x, y)$$

$$+ \frac{\hat{k} k_{\sigma}}{p^2} u_2(x, y) + \frac{\hat{p} \hat{k} \hat{p} k_{\sigma}}{p^4} v_2(x, y); \quad (44)$$

$$Z_{\sigma}^{(2)}(p, k) = \frac{ik^2 p_{\sigma}}{p^2} w_1(x, y) + \frac{i(kp) k_{\sigma}}{p^2} w_2(x, y), \qquad (45)$$

where we have separated the factors which depend only on the logarithmic variables  $x = \ln (p^2/m^2)$  and  $y = \ln (k^2/m^2)$ .

We notice that  $Z_{\sigma}^{(1)}$  and  $Y_{\sigma}^{(1)}$  contain only longitudinal components (proportional to  $k_{\sigma}$ ). The expressions for  $Y_{\sigma}^{(2)}$  and  $Z_{\sigma}^{(2)}$  also contain some purely longitudinal terms (those involving the functions  $u_2$ ,  $v_2$ , and  $w_2$ ). We can save time by ignoring the longitudinal terms completely. After substitution into Eq. (30), these terms give longitudinal components of the polarization tensor  $P_{\alpha\beta}$ . But this tensor satisfies the transversality condition  $P_{\alpha\beta}k_{\alpha} = 0$ . Therefore these terms must either vanish or else cancel each other out exactly.

We thus neglect  $Z_{\sigma}^{(1)}$  and  $Y_{\sigma}^{(1)}$ , and project the expressions (44) and (45) for  $Y_{\sigma}^{(2)}$  and  $Z_{\sigma}^{(2)}$  onto an arbitrary transverse vector  $e_{\sigma}$  with  $e_{\sigma}k_{\sigma}=0$ . Then the substitution into Eqs. (36) and (37) gives the following equations relating terms of second order in k:

$$u_{1} = \frac{\lambda_{1}}{3} a^{2}(x) c(x) q_{1}(x, y),$$

$$v_{1} = \frac{2}{3} \lambda_{1} a^{2}(x) b(x) q_{2}(x, y),$$

$$w_{1} = -\frac{8}{3} \lambda_{1} a^{2}(x) b(x) q_{1}(x, y),$$
(46)

where  $q_1$  and  $q_2$  satisfy the equations  $q_1(x, y)$ 

$$= \int_{x}^{x} b^{2}(z) \left[ \eta(z) - \frac{\lambda_{1}}{2} a^{2}(z) c(z) (q_{1}(z, y) + 2\lambda_{1}a^{2}(z) b(z) q_{2}(z, p)) dz, q_{2}(z, y) \right] dz,$$

$$q_{2}(x, y)$$

$$= \int_{x}^{x} c^{2}(z) [\zeta(z) + 4\lambda_{1}a^{2}(z) c(z) q_{1}(z, y)] dz.$$
(47)

The zero-order equations are the following

$$\eta(x) = 1 - \frac{\lambda_1}{2} \int_x^L a^2(z) b^2(z) c(z) \eta(z) dz$$

$$+ 2\lambda_1 \int_x^L a^2(z) b(z) c^2(z) \zeta(z) dz,$$

$$\zeta(x) = 4\lambda_1 \int_x^L a^2(z) b^3(z) \eta(z) dz.$$
(48)

Eqs. (47) and (48) may be easily transformed into a system of differential equations

$$\frac{\partial}{\partial x} [\eta (x) q_1 (x, y)] = b^2 (x) \eta^2 (x) 
- 2\lambda_1 a^2 (x) b^2 (x) c (x) [\eta (x) q_1 (x, y) 
- \zeta (x) q_2 (x, y)], 
\frac{\partial}{\partial x} [\zeta (x) q_2 (x, y)] = c^2 (x) \zeta (x) 
+ 4\lambda_1 a^2 (x) b^2 (x) c (x) [\eta (x) q_1 (x, y) 
- \zeta (x) q_2 (x, y)]$$
(49)

with the boundary conditions

$$q_1(xx) = q_2(xx) = 0, (49a) \eta(L) = \zeta(L) = 1.$$

Since by Eq. (42)

$$b(x)\eta(x) = c(x)\zeta(x) = 1,$$

we may subtract the second Eq. (49) from the first, and with the notations

$$\eta q_1 - \zeta q_2 = R; \ 6 \lambda_1 a^2 b^2 c = f,$$

 $\frac{\partial R(x, y)}{\partial r} = -f(x)R(x, y),$ 

we obtain

which gives

$$R(x, y) = A(y) \exp\left\{-\int_{0}^{x} f(z) dz\right\}.$$

But the boundary condition R(x, x) = 0 implies A(x) = 0, i.e. R(x, y) = 0 or

$$\eta(x) q_1(x, y) = \zeta(x) q_2(x, y).$$
 (50)

Substituting Eq. (50) into (49), we obtain

$$\frac{\partial}{\partial x} \left[ \eta \left( x \right) q_1 \left( x, \, y \right) \right] = \frac{\partial}{\partial x} \left[ \zeta \left( x \right) q_2 \left( x, \, y \right) \right] = 1,$$

and with the boundary conditions this implies

$$\eta(x) q_1(x, y) = \zeta(x) q_2(x, y) = x - y.$$
(51)

4. We now return to the vacuum-polarization tensor. First of all, substituting Eqs. (33) and (34) into (30), we have

$$P_{\alpha\beta}(k) = \frac{ie_1^2}{(2\pi)^4} \left\{ \frac{1}{2} \int \operatorname{Sp} \gamma_{\alpha} G(p) \left[ X_{\beta}(p, k) \right] (52) + Y_{\beta}(p, k) G(p-k) d^4 p - 2 \int i (2p_{\alpha} - k_{\alpha}) \Delta(p) Z_{\beta}(p, k) \Delta(p-k) d^4 p \right\}.$$

Since the tensor  $P_{\alpha\beta}$  is transverse, it may be written in the form

$$P_{\alpha\beta} = (\delta_{\alpha\beta} \, k^2 - k_{\alpha} k_{\beta}) \, \Pi. \tag{53}$$

To determine II, it is enough to substitute into Eq. (52) instead of the vectors  $X_{\beta}$ ,  $Y_{\beta}$  and  $Z_{\beta}$ 

the transverse components

$$X = X_{\beta}e_{\beta}; Y = Y_{\beta}e_{\beta}; Z = Z_{\beta}e_{\beta}$$
$$(e_{\beta}k_{\beta} = 0; e_{\beta}e_{\beta} = 1).$$

For G(p - k) we substitute the expansion (7), (8), and similarly for  $\Delta(p - k)$ . From Eq. (2) it follows that  $\Delta^{(0)}(p - k) = \Delta(p) - c(r)/p^2$ 

$$\Delta^{(2)}(p, k) = \frac{\Delta(p)}{p^2} = \frac{C(x)}{p^4} - \frac{k^3}{p^2} \Big].$$

For  $X_{\sigma}$ ,  $Y_{\sigma}$  and  $Z_{\sigma}$  we use Eqs. (38), (42), (43), (44) and (45). Making the transformation to Euclidean space and integrating over angles, we obtain

$$\Pi(y) = \frac{2}{3} \varepsilon_1 \int_{y}^{z} \{b^2(x) [\xi(x) + \eta(x) - \frac{3}{2} s(x, y) - \frac{3}{2} u_1(x, y) + 3v_1(x, y)] + c^2(x) [\zeta(x) - \frac{3}{2} w_1(x, y)]\} dx$$
(54)

or using also Eqs. (39), (46) and (47)

$$\Pi(y) = \frac{2}{3} \varepsilon_1 \{ q(L, y) + q_1(L, y) + q_2(L, y) \}.$$
(55)

But Eqs. (40) and (51) give

$$q(L, y) = q_1(L, y) = q_2(L, y) = L - y,$$

i.e.,

$$\Pi(\mathbf{y})=2\varepsilon_1(L-\mathbf{y}).$$

Therefore

$$d_t^{-1}(y) = 1 + \Pi(y) = 1 + 2\varepsilon_1(L - y).$$
 (56)

After renormalization<sup>+</sup> by means of Eqs. (3) and (4), we obtain

$$\hat{d}_t^{-1}(y) = 1 - 2 \varepsilon y.$$
 (57)

We see that the renormalized expression for the vacuum polarization

$$\tilde{I}(y) = -2\varepsilon y \tag{58}$$

is independent of the meson coupling constant  $\lambda$ .  $\widetilde{\Pi}(y)$  is simply the sum of the proton polarization

 $\frac{4}{3} \epsilon y$  and the meson polarization  $-\frac{2}{3} \epsilon y$  which are

obtained from perturbation theory<sup>6</sup> in the limit when  $y \gg 1$  and  $\epsilon y \ll 1$ .

## 4. CONCLUDING REMARKS

1. The result we have obtained, that the photon propagation function is independent of meson interactions for  $e^2 \ll g^2 \ll 1$ , is closely connected with the renormalizability of the theory with scalar coupling. The property of renormalizability already implies a strong restriction on the possible

<sup>+</sup>Since  $\epsilon y \ll 1$ , we have  $d_t^{-1} = 1 - \widetilde{d}_t$ .

<sup>&</sup>lt;sup>6</sup> R. P. Feynman, Phys. Rev. 76, 769 (1949).

behavior of the propagation functions. Consider first the purely electrodynamic problem. The function  $d_t(y)$  depends parametrically on  $\epsilon_1$  and L

$$d_t(\mathbf{y}) = \dot{f}_1(\mathbf{y}; \,\varepsilon_1, \, L).$$

The renormalizability means that after the transformations (3) and (4) the function  $d_t(y)$  becomes independent of L. From the form of the original equations defining  $d_t$  (see reference 1), it is easy to see that y,  $\epsilon_1$  and L can occur in the solution only in the combination  $\epsilon_1 (L - y)$ . In fact, the equations contain  $\epsilon_1$  linearly in front of the integral signs, and the limits of integration are Land y. Hence, after introducing the new variable  $t = \epsilon_1 (L - y)$ , the equations no longer contain parameters in the coefficients or in the limits of integration. Thus

$$d_t^{-1}(\mathbf{y}) = f[\varepsilon_1(L-\mathbf{y})].$$

By Eqs. (3) and (4), the function

with

$$\varepsilon_1 - \varepsilon f(\varepsilon_1 L) = 0$$

 $\widetilde{d}_t(y) = \frac{f[\varepsilon_1(I - v)]}{f(\varepsilon_1 L)}$ 

is independent of L. This is possible if f is a linear function

$$f(z) = 1 + \varkappa z, \tag{59}$$

in agreement with the result of reference 1 (actually  $\varkappa = 4/3$ ).

Similarly, in the purely mesonic problem the solutions can depend on the parameters  $\lambda_1 L$  only in the combination  $\lambda_1 (L - y)$ . Consider the function

$$\theta^{-1}(x) = a^{2}(x) b^{2}(x) c(x)$$
  
=  $F^{-1}[\lambda_{1}(L-y)].$  (60)

By Eqs. (4) and (4a), the renormalized function

$$\tilde{\theta}(x) = \frac{F[\lambda_1(L-x)]}{F(\lambda_1 L)}$$

 $\lambda_1 - \lambda F(\lambda_1 L) = 0$ 

with

is independent of 
$$L$$
, which is possible if  $F$  is a linear function

$$F(z) = 1 + \nu z. \tag{61}$$

This agrees with the results of references 2, 3, both for neutral and symmetric meson fields (in the latter case  $\nu = 5$ ).

2. In our problem  $d_t$  contains three parameters  $\epsilon_1$ ,  $\lambda_1$  and L. Since we use perturbation theory with respect to  $\epsilon_1$ , the function  $d_t$  has the following structure:

$$d_t^{-1}(y) = 1 + \varepsilon_1 \int_{y}^{\infty} \varphi \left[ \lambda_1 \left( L - y \right); \right]$$
 (62)

$$\lambda_1(L-x)]\,dx=1+\frac{\varepsilon_1}{\lambda_1}\,\Phi\left[\lambda_1(L-y)\right]$$

We renormalize the charge by Eqs. (4) and (62),

$$\varepsilon_{1} = \frac{\varepsilon}{1 + \frac{\varepsilon}{\lambda_{1}} \Phi(\lambda_{1}L)}$$

and the meson-nucleon coupling constant by Eqs. (4a), (60) and (61)

$$\lambda_1 = \lambda \theta(x) = \lambda F(\lambda_1 L); \ \lambda_1 = \frac{\lambda}{1 - \nu \lambda L}$$

then the function  $d_t^{-1}(y)$ , renormalized according to Eq. (3), takes the form

$$d_t^{-1} = \frac{1 + \frac{\varepsilon_1}{\lambda_1} \Phi \left[\lambda_1 \left(L - y\right)\right]}{1 + \frac{\varepsilon_1}{\lambda_1} \Phi \left(\lambda_1 L\right)}$$
(63)

$$=1+\frac{\varepsilon(1-\nu\lambda L)}{\lambda}\Big\{\Phi\Big[\frac{\lambda(L-y)}{1-\nu\lambda L}\Big]-\Phi\Big(\frac{\lambda L}{1-\nu\lambda L}\Big)\Big\}.$$

Eq. (63) is independent of L only when  $\Phi(z)$  is a linear function of z. But in that case, it is easy

to see that  $d_t$  is also independent of  $\lambda$ .

In conclusion I express my deep gratitude to I. Ia. Pomeranchuk for many interesting comments, and to B. L. Ioffe and I. M. Shmushkevich for their interest in this work and for critical remarks.

Translated by F. J. Dyson 242