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Solutions are presented of the ordinary Fock equations for the ground configuration of the
neutral boron atom, and of the Hartree equation, supplemented by configuration interaction
terms, for the function P (2p|r) of the configuration 1s2p°, whose effect is included in the

two-configuration approximation 1s22522p — 1522p%. Values are also given for the total
g P‘r" P g

energy as determine

in both the one-configuration and two-configuration approximations. The

total potential function and the radial probability distribution are tabulated.

1. INTRODUCTION

EFERENCE 1 showed that the solution of the
Fock self-consistent field equations is prac-
tically feasible in the two-configuration approxima-

tion2. Further study of the problem® led to the
conclusion that if, instead of solving the exact
Fock equations in the two-configuration approxima-
tion, one uses solutions of the corresponding
simplified Fock equations, the result is hardly
changed while the computational labor is reduced
considerably. This simplification consists in
solving the ordinary Fock equations for the con-
figuration under investigation and, in addition to
this, solving the Hartree equations supplemented
by configuration terms for those radial wave func-
tions of the perturbing configuration whose Fock
equations contain configuration terms. In the
present paper, we take advantage of this simplifi-
cation in applying the Fock self-consistent field
method in the two-configuration approximation to
the ground configuration of the neutral boron atom.

In applying the many-configuration approximation
to the ground configuration of the boron atom, the
two-configuration approximation 1s22s22p — 1s22p3
is of paramount importance. Therefore, in addition
to solving the ordinary Fock equations for the
ground configuration, one should also solve the
Hartree equation, supplemented by configuration
terms, for the function P (2p|r) of the perturbing
con figuration 1522p3. The solutions of these
equations and the corresponding values of the total
energy are presented in the next section. In
Section 3 we shall attempt to determine the effect
of the two-configuration approximation on the total
potential of the system and on the radial probability
distribution of the electrons.

2. SOLUTIONS AND ENERGY VALUES

The ordinary Fock equations for the ground
configuration of the boron atom have the following
form:
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D P(ls|r) + 2228210 pgsir) =0,

The Hartree equation, supplemented by configura-
tion terms, for the function P (2p|r) of the perturb-

ing configuration 1522p® of the two-configuration
approximation is:
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TaBLE ]

Normalized Radial Wave Functions of the Self-consistent Fock Field for the Ground Config-
uration of the Neutral Boron Atom

r P (s|r) | P 2shr) | P@pir) | Px(2pI7) r P (1sir) | P (2s]r) | P (2plr) | Py @2pI7)

20 | 0.1054|—0.6808| 0-6068| 0.6625
25 | 0.0884|—0.6958] 0-6156| 0.6742
30 | 0.0741[—0.7078 0.6230| 0.6839
35 | 0.0620(—0.7170| 0.6250| 0.6918
40 | 0.0519(—0.7236] 0.6337] 0.6978
45 | 0.0434|—0.7277| 0.6372| O

50 | 0.0363|—0.7-97| 0-6395| O

55 | 0.0303|—0.7297| 0-6407| 0-7056
0-0254 [—0.7279| 0-6410| Q-

0.0177 |—-0.7196| 0.6387 0.7000
0.0124 |—0.7061| 0-6332| 0.6901
0.0087 |—0.6884) 0-6251| 0.6761
0.0061 |—0.6676| 0-6146| 0.6587
0.0042 |—0.6443| 0-6021| 0.6386
0.0030 |—0.6193| 0-5882( 0.6164
0.0021 |—0-5932| 0-5730| 0.5925
0-0015 [—0.5664] 0-9567 | 05675
0-0010 |—0-5393| 0-5398| 0.5418
0-0007 |—0.5122] 0-5223| 0.5156
0-0005 |—(.4854| 0-5044 0-4893
0-0003 |—0.4590| 0-4863| 0-4633
0-0002 |—0.4084| 0-4499| 0.4124
0.0001 |—q.3611| 0-4140| 0-3643
—0.3176| 0-3792| 0.3196
—Q.2782| 0-3460| 0-2787
—0.2427| 0-3146| 0.-2418
—0.2109| 0-2850| 0-2089
—0.1828| 0-2575 0.1798
—0.1580| 0-2321| 0-1542
—0.4362| 0-2087 0.1317
—0.1172 0-1872 0.1121
—0.1006] 0-1676] 0.0952
—0.0862| 0-1489| 0-0809

0.0000! 0.0000| 0-0000| 0.0000
0.1982] 0.0400{ 0.0003{ 0.0003
0.3771| 0.0 60| 0.0012| 0.0011
0.53821 0.1084| 0.0027 | 0.0024
0.6831| 0.1374| 0.0048| 0.0042
0.1631 0-0073| 0.0065

0.9283| 0.1858] 0-0102| 0.0091
0.2058' 0.0136| 0.0120

0.2231 0-0173| 0.0154

. 0.2379] 0-0214| 0.0191
4.2720| 0.2505| 0.0258| 0.0231
.3328| 0-2610| 0.0305; 0.0273
.3851| 0-2695{ 0.0355| 0.0318
L4297 0.2762) 0.0407 | 0.0366
4672 0.2811| 0.0462| 0.0416
L4982 0.2844) 0.0519| 0.0468
.5232| 0.2863) 0.0578 | 0.0522
.54271 0.2868 0.0639 0.0578
.5572| 0.2859/ 0.0 01| 0.0636
.5672| 0.2839 0.0765| 0.0695
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.57381 0.2715| 0.0963| 0.0881
5622 0.2588) 0.1101| 0
1.5404 | 0.2430] 0-1242| 0
.5105| 0.2246| 0.1385| 0
47417 0.2041) 0.15301 0.
L4326 0.1818| 0.16761 0.1567
.3873] 0.1581] 0.1822| 0
.3391| 0.1331f 0.1969| 0
.2889| 0.1071} 0.2116| O
.2375( 0.0805] 0.2262] 0
.1854| 0.0532] 0.2408| 0.
.1332] 0.0256] 0.2552| 02456

PP O000000000 POOOPROSOPO000900000

0. .0813 |—0.0022| 0.2694| 0.2606 —0.0738! 0.1338| 0-0686
0. .0300 {—0.0301| 0.2835| 0.2755 —0.0631] 0-1192| 0.0580
0. 0.9796 [—0.0580| 0.2974| 0.2904 —0.0538] ©-1061| 0.0489
0. 0.9304 |—0-0857| 0.3111| 0.3052 —0.0459| 0-0942| 0.0412
0. 0.8825 |—0.1132! 0.3245| 0.3199 —0.0307| 0-0698| 0.0268
0. 0.8360 [—0.1404| 0.3377 | 0.3345 0 0204 0-0514| 0.0172
0. 0-7911 |—0.1673| 0.3507 | 0.3490 o.0136] 0-0377| 0.0111
0. 0-7478 |—0.1937| 0.3634| 0.3633 —0.0092| 0-0275) 0-0072
0. 0.6470 1—0.2574| 0.3940 | 0.3981 —0.0061| 0:0200| 0.0047
0. 0.5569 |—0.3173] 0.4228| 0.4316 —0.0040| 0.0146| 0-0030
0. 0.4771|—0-3731] 0.4497| 0.4635 —0.0027| 0-0107} 0.0019
0- 0.4073 |—0.4246{ 0.4746. 0.4937 —0.0018| 0-0078| 0.0013
0. 0-3467 [—0.4745| 0.4976| 0.5220 —0-0008| 0-0042 0-0005
0, 0.2943 |—0.5139] 0.5187| 0.5484 00004 0-0023| 0-0002
0. 0.2491 |[—0.5519] 0.5379| 0.5727 —0.0002 0-0012| 0-0001
1. 0.2104 [—0.5856] 0.5552| 0.5948 o, 0001| 0-0007

1.05 | 0-1774|—0-6151| 0.5707| 0.6149 : 0-0004

1.10 | 0.1493|—0.6407| 0.5844| 0.6329 0-0002

1.15 | 0-1255{—0.6625| 0.5964| 0.6488 0-0001
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In Egs. (2.1) and (2.2), Z denotes the nuclear
charge, €, ; 4 are Lagrange multipliers. The

function Yk(nl, nl |r) is defined as usual. When
necessary, indices are attached to this function to
indicate the number of the configuration to which
the corresponding wave function refers. Since, in
our approximation, the function P (1s|r) is

the same in both configurations, the function

Y (s, 1s |r) in Eq. (2.2) is the same as in Eq.
(2.1). In (2.2), P (2p|r) refers to the perturbing
configuration except in the case of the quantity
N(2p, 2p), , defined in Eq. (3.1) of reference 2.
Here one of the functions P (2p|r) refers to the
basic configuration (index 1), while the second
refers to the perturbing configuration (index 2).
The supplementary indices on the Lagrange
multiplier in Eq. (2.2) indicate that it refers to

I.I. GLEMBOTSKII, V. V. KIBARTAS AND A. P. IUTSIS

configuration 2. The absolute value of the
constant a, , gives the weight of configuration 2
relative to configuration 1.

In solving Eq. (2.1), we used as initial trial
functions the corresponding solutions of the Hartree
equat}on, given in reference 4. The solution was
carried up to self-consistency index 7 =0.0025
(cf. Eq. (2.8) of reference 5). To solve Eq. (2.2),
the initial function P ,(2p |r) was constructed using
a hydrogen-like analytic wave function obtained
with the aid of the results of references 6 and 7.
For the starting value of o, ,
obtained using analytic wave functions’, where the
constants were determined in the one-configuration
approximation. The solution of Eq. (2.2) was

carried to a self-consistency index of 0.0050 for
P,(2p|r) and 0.002 for a The normalized solu-

we took the value

12°

TaBLE II

Values of the Lagrange Multipliers, Radial Integrals, and Energy,
for the Ground Configuration of the Boron Atom
(in Atomic Units)

e 1s = 15.386 8"83’ 25) = 8’835(5)
L, = 0.9903 s, 2p) = 0.04
©25, 25 = U 0 Gi(2s, 2p) — 0.2728
Sp, 2p = 0.6182 Fu2p, 3p) = 0.4646
S2p, 2p)e2™ 1.1452 Fo(1s, 2p)y; = 0.6388
Fy(1s, 1s) = 2,9325 Gi(Ls, 2p)y, = 0.0420
Fo(2s, 2s) = 0.4602 Gy(2s, 2p);s = 0.2978
Fo(1s, 2s) =0.6485 N@2p, 2p); = 0.9894

Fy(1s, 2p) = 0.5994
Fy(2s, 2p) = 0.4370
a b

Eu — 24.562 — 24.562

Ess — 24,045 —~ 24,003

12 + 0.129 + 0.139

— 0.030 — 0,033

Qe — 0.233 — 0.238

E — 24.592 — 24.595

Eexp — 24.658

Footnote.- a) on the assumption that P2(2p | r) =P (2p| r); b) using
P2(2p lr) as determined in the two-configuration approximation.

tions are given in Table I. We should point out
that the solution of Eq. (2.1) was carried out on
the assumption that €, . , =0. The orthogonality
of the functions P(2s|r) and P(1s|r) was achieved
by direct orthogonalization after each successive
solution.

The values of the Lagrange multipliers, the

4 G. K. Tsiunaitis and A. P. Iutsis, J. Exper. Theoret.
Phys. USSR 28, 452 (1955); Soviet Phys. 1, 358 (1955),

5 A. P. lutsis and G. K. Tsiunaitis, J. Exper. Theoret.
Phys. USSR 23, 512 (1952).

6 V. I. Kavetskis and A. P. lutsis, J. Exper. Theoret.
Phys. USSR 25, 257 (1953).

7 A. B. Bolotin and A. P. Iutsis, J. Exper. Theoret.
Phys. USSR 24, 537 (1953).
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radial integrals, the constant a, , and the energy
are given in Table II, in which the experimental
energy value is also included.

3. TOTAL POTENTIAL FUNCTION AND RADIAL
PROBABILITY DISTRIBUTION

In quantum-mechanical computations, the func-
tion

T (Ailr) ZQ[Z—ZCM Yo(nl,nllr)]. 3.1)
nl

plays an important role. Here 4; denotes the term

A of the configuration i of an atom whose atomic

number is Z; ¢ _; is the number of electrons in the

nl shell.

The function T(Ail r), divided by 2r, represents
the potential of the total system. We shall call
this function the total potential function.

It is not difficult to show that the total potential
function for the term 4 of the configuration ¢, can
be represented, in the many-configuration approxi-
mation, in the form:

479

In particular, in the two-configuration approxima-
tion 1522s22p — 1522p3, where P(1s|r) is the
same for both configurations, the total potential
function for the configuration 1s22s%2p is:

T =2Z—2Y,(1s. 1
(n =2{ o (1s. 1s|r) 65

L [2¥,(2s, 25| + Yo(2P. 2P|Pn

1+ af

+ 3“?2 Y, (2p. 211] r)22]}-

The subscripts on Yo(ls, 1s|r) have been omitted

for the reason just mentioned.

In the one-configuration approximation, we have
the following expression for the radial probability
distribution:

W (Ai |r) = DycuP?(nlr).

nl

(3.4)

To obtain the corresponding expression in the
many-configuration approximation, we must replace

i 1 2
T(A'|r)= S e 2 ai; T (Ajlr). (3.2) T byWin(3.2). We obtain the following expres-
e sion for the radial distribution of the configuration
TaBLE I
Total Potential Function and Radial Distribution for the Ground Configuration of the Boron
Atom '

r T(r) 10°8T w(r) | 108w r T(r) 10T I W) | 10sw
0-00 |10.000 0 | 0.000 0 1.0 | 2.549 —6 | 1.086 | " 44
0-02 | 9.547 0 0.295 —1 1.1 2.273 —7 1.209 13
0-04 | 9.106 0 | 0.969 —2 1.2 | 2.019 —7 | 1.319 +2
0.06 | 8.684 0 1.789 —3 1.3 1.787 —17 1.402 +1
0.08 | 8.286 0 | 2.612 —5 1.4 | 1.577 —6 | 1.455 41
8}3 355);153 +i g 352 —7 1.5 1.388 —5 1.477 ‘41

. : + 3.97 —8 1.6 2 — 7
044 { 7.249 | 41 | 4.457 | —9 1.8 3..93? _g iii’ég iﬁ
0.16 | 6.955 +1 4.799 —9 2.0 | 0.707 -5 1.2711 +2
0.18 | 6.685 0 | 5.010 —8 2.2 | 0.533 —5 | 1.114 +1
0-20 | 6-437 0 5.105 —8 2.4 0-400 —5 0-952 0
8% gggi (1) 5‘02%’ —6 2.6 | 0-300 —4 | 0-797 0

. . — 4 .67 —4 2:8 . . . —
0.32 | 5.316 | —1 | 4198 | —1 3.2 8?% "o 8,23(7) _12
0-36 | 5.043 —2 3.662 +1 3.6 0-069 _9 0.272 _2
0-40 | 4.802 —2 | 331 +4 4.0 | 0-038 —1 | 0.168 —2
0.44 | 4.587 | —3 | 2.641 | +6 44 | 0.022 0 | 0102 | —2
0.48 | 4.392 | —4 | 2212 | +8 4.8 | 0-013 0| 0.061 | —1
0.52 | 4.211 —4 1.852 +9 5.2 0-007 0 0.036 —t
0-56 | 4.041 —5 | 1.561 +9 5.6 | 0.004 0 | 0.022 0
0.6 3-881 —5 1.336 +10 6 0.002- 0 0.013 0
0.7 3.509 —6 1-010 +10 7 0.000. 0 0:003 0
0-8 | 3.166 —6 | 0-926 +8 8 0-000, o | 0.001 0
09 | 2.847 | —6 | 0.976 +6 9 1 0.000. 0

S L

Footnote.- The values of T and W are given in the two-configuration approximation. Also
given are the differences between the two-configuration and one-configuration values,

multiplied by 1000.
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1522s22p in the two-configuration approximation
1s22s22p - 1s22p3:

1
1 +af,

+ Pi (2p|r) + 3a3: P: (2p | r)].

W(r)=2P%(ls|r) +

[2P; (2s|r) (3.5)

The values of T and W are given in Table IIl. In
the table, the steps in r are twice the interval used
in the calculations. Interpolation can easily be
done if necessary. This is especially true for the
total potential function, which is frequently used
in computations.

4. CONCLUSIONS

From the results presented in Table II, we see
that the two configuration approximation improves
the theoretical energy value by 0.033 atomic units.
Changing from one electron wave functions,
determined in the one-configuration approximation,
to functions determined in the two-configuration
approximation is associated with an improvement

of the result by 0.003 at.u., compared with 0.011
at.u. for the case of the neutral beryllium atom®.
Investigation of this question shows that, for
beryllium, the configuration 2522p% would also
give a much smaller effect than the 2s22p? con-
figuration®.

From Table III we see that the values of the
total potential function 7' and the radial probability
distribution W, as determined in the two-configura-
tion approximation, differ from their values in the
one-configuration approximation by less, in
absolute value, than 0.007 and 0.010 respectively.
The sign of this difference shows that the two-
configuration approximation gives smaller
screening of the nuclear charge in the neighborhood
of the nucleus, and larger screening far away from
it, as compared with the results obtained in the
one- configuration approximation.

8 ¥. V. Kibartas, V. I. Kavetskis and A. P. Iutsis,
J. Exper. Theoret. Phys. USSR 29,623 (1955); Soviet

Phys. 2, 481 (1956).

Translated by M. Hamermesh
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