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Examination is made of the pseudoscalar meson field which interacts with moving 
nucleons in the strong coupling approximation. A theory is developed which takes into 
account the polarization of the nucleonic vacuum. 

l IN earlier works 2 •3 we investigated the meson 
• field which interacts with infinitely massive 

nucleons at rest. We now consider this problem 
£or moving nucleons with finite mass. 

The Hamiltonian (1) and (29) in reference l, for 
nucleons at rest, 

3 

H = ~ ~ ~ [ il!+c2(V<I>"')2+c2x2<1>! 
ct=l 

(1) 

n 

-+ 
[Ooci = Tocai \lU (r- ri) in the case of a pseudo-

scalar field ] is obtained from the exact Hamil­
tonian, which has the following form for a pseudo­
scalar charged field: 

n 

H = ~ [c (;~. p;) + ~1mc2] (2) 
i 

3 

+ + ~ ~ [ n; + c2(Y'<I>cx)2 + c2x2<1>~ 
"' 

n 

- 2c V 4'1t ~ (0 ctl<l>cx 
i 

n,n 

+ F"';ilcx) + 4'1tC2 ~ Fcx!Fcxf J dr; 
I} 

1 T. Geilikman, J. Exper. Theoret. Phys. USSR 29, 
417 (1955); Soviet Phys. 2, 509 (1956). 

2 B. T. Geilikman, J. Exper. Theoret. Phys. USSR 29 
430 (1955). • 

3 
N. Kemmer, Proc. Roy. Soc. (London) 166A, 127 

0938). 

277c 2 f ~ F oc' F oc· dr are the so-called contact 
«,i,j ' I 

tErnls 3 • The Hamiltonian (l) is obtained from (2) 
with the help of a transition to the nonrelativistic 
apprrncimation(i.e., a neglect of terms of order 
E / nmc 2 ) in comparison with those entering into 
(1), and then with neglect of the kinetic energy 
of the nucleons. Neglect of the kinetic energy of 
the nucleons in the zeroth approximation corres­
ponds to expansion in powers of p./m, as it does in 
molecular theory. The motion of the nucleons can 
e~Bily be taken into account by means of adiabatic 
perturbation theory, analogous to the theory which 
applies to molecules 4. 

However, if we take into cons.ideration in the 
lhniltonian (1) the subsequent terms in the expan­
sion of (2) in powers of ( E /nmc 2 ), then, as was 
shown in reference 4, these terms give the follow­
ing correction for cp~ in the case of a single 
nucleon: 

o<p~ = h ( 1 + ~~2 ~ hU dr 

_ B <~>2 ~hUdrr1 {r B<~>2 -
X ~fcxU dr- ('tcx) B ~ ('t13) ~ if3U dr 

13 

(3) 

X ( 1 + ~;2 ~ hU dr) -1
}; 

f,. = (gfcV 41t) ~ (0"' (r')) 0 (r, r') dr'; 

h = ~ U(r')O(r, r')dr'; 

4 B. T. Geilikman, Dokl. Akad. Nauk SSSR 91, 39 
(1953). 
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Equation (3) keeps terms of order g 2 (amc 2 )- 1 in 

comparison with cp~ for m = oo (a =nuclear 

"radius"). The correction for the energy EX is of 
the same order of magnitude (i.e., it is of order 
Elmc 2 ). If we assume that the eigenvalue of the 
energy of the nucleon in the meson field amounts 
to only a small part of its rest energy, then 
g 2la rvmc 2 and g_ 2IK 2a3 ""mc 2 (for grqdient 
coupling); if a-+ 0, then the passage of m to 
infinity must he removed by renormalization. In 
this case the usual transition from the exact 
Hamiltonian to the nonrelativistic approximation 
and then to nucleons at rest (l) is invalid. For 
two or more nucleons, the condition for the appli­
cability of the non-relativistic approximation 

(EX- E~-)/mc 2 <<lis not satisfied in the case of 
small separation of the nucleons, even for 
ocp~ = 0, i.e., without taking into account the suh-

s~quent terms in ( Elnmc 2 ). Indeed, it was shown 
in reference 2 that the distance between two 
levels E ~ 3 - E ~ 1 for a system of two nucleons is 

equa1 to 2K, i.e., ""g2 I a for r "" a ( nongradient 
coupling) and ( g 2 I K 2 a 3 ) (gradient coupling). 
Thtls, E~ 3 - E~ 1 is of order mc 2 if g 2la 

""mc 2 ( g2/K2a~"" mc 2 ). Therefore, if mc 2 

""g2 I a( mc 2 "" g 2 IK 2a3 ) we must consider the 
Hamiltonian (2) directly. In this case, only the 
solution of (2) for the nonrelativistic case 
v << c mak~s sense, so long as the nucleons are 
~sumed to he extended. 

For pseudoscalar coupling the energy of inter­
action of the nucleons with the field depends not 
only on <floc hut also on the momenta lice. There-

• i 
fore, <floc =-h [H, <floc] =-f. Iloc. As was shown in 

reference l, the zeroth approximation corresponds 
to a neglect of the. kinetic energy of the field, hut 

since Iloc =f. 0 for <ll oc = 0, then nee =f for the zero 

field also (potential momentum). We assume that 
<l!oc = cp~ + 'Poe ; Iloc = IT~ + IToc. The HamiltoniaB of 

zeroth approximation is then 
n 

Ho = ~ [c (7x~o Pi) + ~~mc2] 
i 

+ {- ~ ~[(1t~)2 + c2<p~ (x2- ~) cp~ .. 
n n,n 

- 4cV; ~(G .. 1cp~ + F,. 11t~) + 47tc2 ~F .. 1F .. 1]dr 
1 i ~ J 

The eigenfunctions of H 0 1/J ~ d,epend on the co­
ordinates r 1 , ... , r4 , and on the spin vari-

ahles S 1 , . . . , S n. The perturbation is 

H' = H_- H0=H<1J + H<2>; 

H<1>= ~ ~ { c2 [(x2- ~) cp~ 
n 

- v ~1t/& ~ a .. ~J cp .. 

' n 

+ [ 1t~ - c Y 41t f F .. i] 7t"'} dr; 

H(2) = + ~ ~ [7t! + c2cp"' (x2- A}<p"] dr. 

"' 
The equation for cp~ and IT~ must he found from the 
condition 

n 

H (I) \ ('"o• 
nn = J 'fn' 

H<1>q>~) IT dr1 = 0 .. 
i 

as was shown previously in reference l [see Eq. 
(12)]. This condition will he satisfied if 
cp~ and IT~ obey the equations 4 •5 : 

(x2-~)rpo=Jf'47t~(Q.)s· (4) 
a c ..L.J a.r nn' 

i 

n 

1to = C ~ I 47t ""' (F . )s . a. V ~ ar nn 
i 

Here 

<a >s a.i nn 

is the mean value of Goci over the variables of 
ordinary and isotopic spin of the nucleons. Equa­
tions (4) are the natural generalizations of the 
equations for the zero field in the case of nucleons 
at rest (reference l ). We substitute the. solution 
of Eq. (4) in the expressions for H0 and H0 >: 

5 B.T. Geilikman, Dokl. Akad. Nauk SSSR 91, 225 
(1953). 
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n 

ffJ =] [c (~;, p;) + ~;mc2] (5) 

; 

a, n. r;, 

+-} ] ~ [(O«;(r'))~n 
«, i, j 

3, n, n 

+ 2'1tc2 ~. ~ [((F«j)~n 
«' t, 1 

e-><fr-r'l 

O(r, r')= lr-r'!; 
(6) 

a, n 

H<1> = cV 4'1t ~. ~ [((O"i>~n- O";)cp" 
«,I 

H the eigenfunctions 1/J ~and eigenvalues E ~of the non­

linear equation H01/J~ =E ~ 1/1~ are found, it is possible to 

form the HamiltoniansH0 fromH 0 by substituting in 
~ n 

<F .>8 and <G . >8 the function 1/Jn° (r 1, .• oc,. n n o::r. nn 

. , s n) in explicit form. The eigenfunctions 1/J~l 

of the equation H 0~~l = E~t/'~l form a complete 
orthogonal set. We now seek the total function 

for the Hamiltonian {2) in the form 

'Yn = ~ [x?, (~") 8nl + X~z (~ .. )] ljl~l (rl, · · · 5n). 
l 

Assuming that cp « cp0 , Xn'l « X~, we can de­

velop the theory of perturbations as in reference l, 
Sec. 2 (only now the spectrum of the unperturbed 
Ha/hiltonian is continuous or quasi-discrete if a 
fin'ite volume V is considered). In this case we 
obtain an equation for X~ (in the absence of de-

generacy for E~n: E~l :f= E~n of l :f= n; the de­

generate case will be considered below): 

(7) 

E~ =En-- E!. · nn, 

f! -- H' + "\1 H<JlH<t> (Eo Eo )-1 n2 - nn· LJ nl ln. nn - nl ; 
I+n · 

H~s = ]H~\lHi~l [(E~n- E~t + E~)-1 
l 

H~a = 2} ~ H~\' H}~H~~ (E~n - E~1 )-1 

l m 

X 
(E?zn- Eo )-I. nm , 

n 

H;m = ~ (ljl~~. Hljl~m) ITdr;; 
; 

H , H<2l nn = nn, TaK KaK H~~=O. 

If we generalize the usual method of reducing to 
the sum of squares a Hamiltonian which is 
quadratic in momenta p8 and coordinates q8 (see 

reference 6) to the case of TT and m which de-
ex Tex 

pend on the continuous index r, we can show that 
Hn 2 takes the form: 

H _ _!_ ""< 2+ 2 ~ n2 - 2 Ll pk wkqk, 
ll 

after the canonical transformation: 

'It= « 

cp« = 

f [ cp;" (r) (qll- ip,jwll) + ~ cp;;. (r) (pk- iwkqk)] ; 

Here TTtex• ~ex are the solutions of the field equa­
tions 

cp .. .:.__ - iwcp .. 

= ! [Hn2• cp«] and - iW'Ita. = + [Hn2• 'It«], 

6 E. T. Whittaker, Analytical Dynamics. 
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which coiTespond to the frequency + (J)k' and 

rr;;O<. <0:or. to the frequency - (J)k' 

Inasmuch as H(2 ) for m =I= oc coincides with 
H< 2 ) for m "" oo, the frequencies (J)k 

"" c y K2 + k2 as before, and do not depend on qJ~· 

Since the field qJ~"' g 1 and CJlor."' g 0 , as was the 

case for m "" oo, the nonlinearity of the field of 
real mesons %:remains of the order 15- 2 • 

The conditions of applicability of the perturba­
tion theory qJ << qJ0 , x: l « X~ have the same form 

as in the case of nucleons at rest, since the 
estimates of qJ and cp0 ( rr 0 "' K c qJ0 ) remain un-

changed: g 2/lrc »land g 2/-hc» K 2a2 (in the 

absence of mesons). 
2. The solution of the zeroth order approxima­

tion of the equation with the Hamiltonian (5) pre­
sents the greatest difficulty in the case of moving 
nucleons. Equation (5) is then a nonlinear differ­
ential equation, and not an algebraic equation as 
was the case for nucleons at rest. The problem 
is simplified in the case of a single nucleon. There 
the solution has the form: ¢ 0 ( r, s) =[u 0 

x ( s ) ei . Jt, r1[ u 0 ( s ) is a factor which depends on 
the spin variable s]. Substituting u 0(s )ei k·r in 
Eq. (5), we get an algebraic equation for the eight 
component function u 0 (s ): · 

{nc (;, k) + ~mc2 + {- ~ ~11 G" (r') In- 20" (r')] j Gcx (r) j~.~.a (r, r') dr dr' (S) 

+ 211:c2 ~~[(I Fcxlt-t-- 2Fcx) I Fcx b;. + F~] dr} U~ = E~n~. 
ex 

An analogous equation is obtained in the case 
of a scalar field with scalar coupling: 

[ 1ic (;, k) + ~mc2 + ·~2 ~~[I""~ It-t-

- 2'tcx~] \ 'tcx~ It-t-V (r) u (r') a (r, r') dr dr'] 

o Eo o 
X Up.= p-Ur.· 

As an example we take the solution of the equa­
tion for u~ with a neutral field: 

[C (oc, p) + ~mc2 + (J ~2/2)- ~e) UO = £OuO· 
s s 1'- 1'- p.' 

ls=g2 ~ U(r)U(r')G(r, r')drdr'; 

E =I Pit-A; p = 1ik. 
If we equate the determinant of this set of four 
equations to zero, we get: 

[(me-·- J;~Y+ p2~ (Jf- -~)T= 0; 

£0 =Js;2 +c((mc- J;~/+ p2. 

We see that both the level with £ 0 > 0 and the 
level with £0;::. 0 are doubly de~nerate. The same 
degenerac·y is obtained for a pseudoscalar field 
with pseudoscalar coupling. Because of the de­
generacy, we cannot use Eq. (4), since the expres­
sion <Ger.> ~n remains indeterminate in the case 

of the two functions t/J~ 1 and t/J~ 2 . With degener­

acy, therefore, it is more appropriate to use the 

first, and not the second, variant of the adiabatic 
perturbation theory (see reference l, Sec. 2 ). In 
such a case 

H0 = c ( ;, p) + ~mc2 

3 

+ ~ ~ ~ [c2<l> .. (x2- A) <I> ex- 4c y;a"<I> .. ] dr; 
.. 

3 

H' = ~ ~ ~ IT~dr; 
<1. 

for the scalar field Gor. ""f3 ~ gU ( r- r 1 ). (For 

pseudovector and mixed coupling, the degeneracy 
is absent; see below.) The t/J functions of 
zeroth approximation depend upon <I>oc : 

We seek the total 'l' function of the system in the 
form 1 : 

'F',k = ~X (<I> ) u0 (s Cl> ) e1 <k', r> 
A ~ ~kl Cl ~k1 ' (l • 

fl, k' 

If the degeneracy is twofold (as was the case for 
neutral field with nongradient coupling), then 
fork'"" k, E~k ( qJ0) ""Egk( qJ0). In the first ap-

proximation in the sum over k ' and p., there remain 
only two components with k '"" k and p. "" l and 
p. "" 2. If we substitute ~n the equation 

H'F' = E'F' 'F' = (Xo uo + Xo uo ) e' (k, r) lk lk 2k .2k , 

we get two equations for x~k and xgk (below, 
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X~= X,\~ v- 1 fE~kdr 1 = v- 1 fEgkdr 1 =:=£ 0(<1>), 

0 - 0)· 
UAk = U,\ • 

[ ~ riJ2dr + E0 (<I>)] X~ (9) 

+ fu (II, <I>):x~ + /12 (II, <D) X~= Ex~; 

[ ~ ~ II2dr + E 0 (<I>)] X~ 

+ /21 (II, <I>) X~+ /22 (II, <D) xg =Ex~; 

Here 

f .. A(II, <D)=; (u~·, [~II2 ,dr, u~J); 

([A, B] =AB-BA). 

We can now introduce the 2x2 Pauli matrices 
a , a , a and the two component function x0 

" y % 

0 

= X 1 • Then the set (9) is written in the form 
o• 

't'x2 

~~=~;~ (~ 

= ~ ~ II2dr + E 0 (<D)+~. a (<I>, 
~1 

a.r = 2(/12 + /21); 

IT))+ b (<D, ll); 

i 1 • 
ay = y(/12- /21); az = 2(/u- /22); 

1 
b = 2 Un + /22). 

We calculate 

s = nn2dr, u~(«<>)] 

= ~ (ll [ll, u~ (<D)] + [II, u~ («<>)]II) dr; 

[IT, u ~ (<I>) J = g,\ (<I>) =functional of <I>. There­

fore 

e b ~ ((ll, g).) + 2gAII) dr 

= ~ (hA («<>) + 2gA («<>)II) dr; 

/~A= ~ ~ [(u~·, hA) + 2 (u~·, gA) ll] dr. 

Thus b and a , a , a are linear functionals of IT. 
" y % 

Equation (10) can he solved by the usual method .. 
We set <I> = cp0 + cp, IT = 11° + 11 and expand H 1 in a 

power series in cp; 11: H 1 = I H ~k } , limiting our­
k=O 

selves to the quadratic terms. The equations for 
c'p0 and 11° are found from the conditions 1: 

<H(~}> = 0; they have the form: 

In first approximation for Eq. (lO) we write 
0 ,,,o ( 0 0) 0( \ . It . . X = '!' q, cp , 17 X cp1, we o am an equatwn 

for the two component functi(Jn x0 (q) ( q is the 
spin variable -; ; q = q 1 , q 2 ) : 

[; ~ (1to)2dr + Eo (cpo) + (-;, a (cpo, 1to)) (ll) 

+ b (cp0 , 1t0)J 1\l~ (q) = Egvi\J~ (q) 

and the equation for x0( cp) is 

[ ffl2) +*I Hi1)lvp I H?) jpv (Egv- E~p)-l] X0 (cp) 

= E~ Xo (cp); 

I ffl1) lvp = (*~• (q), Hi1)1\J~ (q)). 

It is evident that the degeneracy is removed he-
-+ 

cause of the terms in E% (ll) which contain a, 
and we obtain E g 1 =I= E 02 for a given k. 

For X' with l =I= n, i.e., k '=I= k or f1 = 3, 4 
nl 

fork'= k, we can make use o( the usual equation 
(see reference l, Sec. 2 ). The appropriate solu­
tion of Eq. (lO) will he given in another wock. 

In the case of fourfold, rather than twofold, de­
generacy, a set of four equations for X~x· Xgk' 

x~k.' x~k can he written with the help of 4x4 

Dirac matrices. The method outlined above, with 
the introduction of the matrices ~ can also he em­
ployed in molecular theory in the case of degener­
acy of the electronic level for arbitrary values of 
the nuclear radius vectors R .. • 

We now consider the solution of Eq. (8) for the 
pseudoscalar neutral field with pseudovector 
coupling (degeneracy is not present in this case): 

[ (- ) +R 2 + Jp(TJ)2 + J(1 +l:Z) (12) c oc, p ~me 2 2 

-JP(~, ~)-JC15]u~=E~u~; 
~ = 1-; In; C = I Toln; 

2 
J gpv (' iJ2G (r r') 

P = X2 j ax a~' U (r) U (r') dr dr'; 

41t'~ (' 
1 1= x.:vjU2 (r)dr'. 
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H we set the determinant of the system (12) to 
zero, and assume that the z axis is directed along 
the vector p, we obtain 

[(po + b z)!i - 12] [(po - b )2 _12] 

+ 2 (p2 + ()2) (p~- i2 - b~) --2 (b2- b;) (~ + 12- b~ + ()2- p2) 

+ (b2- b~)2 + (p2- (}2)2 

Po= me; 

-]p"IJ 
b=--· 

c ' 

For p = 0, the system (12) divides into two 
systems of two equations, if we assume that the 
axis z is parallel to b (see reference 2, Sec. l ). 

l) For ,\ = l and ,\ = 2: u~2 = u~4 = 0; 11-z = +l; 
( = 0 for,\= I 

J-J 
Ef1 = :r_e + mc2; 

for A= 2 

2) For ,\ = 3 and ,\ = 4: u~ 1 = u 0 
3 = 0; 71_ = -l; '= 0; p. % 

for A= 3 
0 J-J 

Eaa= ~+ mc2 ; 

0 1-J 
for A = 4 E44 = ~ __ mc2. 

The vector b is oriented in arbitrary fashion for 
p = 0. For p =I= 0, the energy E 0 and u 0 can be 
found by means of a Lorentz transform/tion. Also, 
for p =I= 0, b II p and (=I= 0. 

If the "nonmeson" mass of the nucleon is 
small in comparison with the "meson" mass: 
mc 2 « !, we can effect a transition in Eq. (2) for 
a single nucleon to the nonrelativistic approxima­
tion, assuming that E = const + ] + E 'and 
E '«! (cp « ], mc 2 « !). But there is no neces­
sity for this, since, as we have seen, it is pos­
sible to solve Eq. (8), which corresponds to the 
relativistic Hamiltonian (2), and then assume 
P.«f/c. 

For two and more nuCleons, the transition to the 
nonrelativi.stic approximation ( E '«]) and then 
to the case of nucleons at rest, is possible for 
large separations I ri - rj 1 »a; for small separa-

tions I ri -· rj 1 "" a,such a transition is not pos-

sible in principle, as was shown above. Thus, in 
this case the concept of a static potential of inter­
action loses its meaqing. The general form of the 
energy of zeroth approximation can be found by 
taking the mean value of H0 (5) (in terms of the 
eigenfunctions IP, 0 ): nm 

n 

3, n, n 

-,-- ~. { ~ ~I o"'i (r) Inn I Oai (r') lnnO (r, r') dr dr' 
a., l, 1 

+ 2'1LC2 ~ (I Fai Inn I Faj Inn -I FaiFa; Inn) dr}. 

Here, in addition to an interaction with effective 
radius K-l (due to terms which contain Foe/ocr we 

also get forces between nucleons with a radius of 
action "" a [this is seen directly from Eq. (4)]. 

3. Up to the present, we have been assuming 
the nucleons to he extended, and have not con­
sidered the presence of a nucleonic vacuum which, 
as is known, leads to an additional interaction of 
nucleons among themselves, of mesons among 
themselves and of nucleons with mesons. 

A systematic consideration of the vacuum is 
possible only in a relativistically invariant 
theory, i.e., for the transition from extended 
nucleons to point nucleons. Therefore, in the 
following we shall assume that the transition to 
the limit a-+ 0 [ U (r- r.)-+ S (r- r.) ]is carried • • 
out. In this case, the eigenvalue of the energy 
of the nucleon which enters into the energy of 
zeroth approximation is divergent, and there 
arises the problem of renormalization, which wi 11 
be considered elsewhere. It must he observed 
that a transition to zero nuclear radii, without 
consideratipn of the vacuum, gives reasonable 
results in the case of nongradient coupling. Ac­
tually, as was shown in reference 2, Eq. (9), for 
an infinitely extended nucleon interacting with 
the scalar field_ the scattering cross section of 
the meson with the nucleon is, at a = 0 du 
= ( K 2 + k~ )" 1d Q; in the ~ase of gradie~t coupling, 
the cross section tends to zero as a approaches 
zero in the limit. However, it is necessary to take 
account of the nucleonic vacuum in a systematic 
relativistic theory, in addition to the transition to 
point nucleons. 

The effect of the vacuum, without application of 
second quantization to the nucleons was 
estimated in reference 5. It is more convenient to 
make use of the method of second quantization. 
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In this case the Hamiltonian has the fonn (in 
charge symmetric fonn; see reference 7 ): 

H=~ljJ+(c(~. p)+~mc2)•?dr 
3 

+ ~ ~~ {II~ + c2 (V'<I>"')2 + C2
K

2<I>! 
<X 

- 2c v; ~ [;v (r'), 

~(O"<I>"' (r) + F"II"' (r)) ljJ (r')l dr'. 

(13) 

+ C27t (~ [f (r'). W"'f (r')] dr' Y} dr, 

U ( r - r ') enters in G .. and F rx [see E q. (2)] : 

f ~+p; ljJ (.r) ~+ (r') + '-\!+ (r') ~ (r) = o (r- r'). 

The Hamiltonian (13) is obtained from the Hamil­
tonian (2) in the usual way by a transition from 
the method of configuration 'Space to the method of 
second quantization. The 'P function of the state 
now depends on the occupation number. 

We assume, as earlier, that <llrx = cp2 + Cflrx; Ilrx 

= n:0 + n: • Then n = n° + n<l} + n< 2 >: ·oc ·o::: 

~ = H} + ~ f (c (;, p) + pmc2 ) 'f dr (14) 
3 

- cv; ~ ~ [~ (r'), 
<X 

HJ = -} ~ ~ {( 7t~)2 + c2 (V<p~)2 + c2)(2 (<p~)~~ 

+ l"tC2 n [f (r'), W<X·? (r')] dr' t} dr; 
- !J ~ 

H(l) = ~~{7t~7t" + c2<p"' ()(2- ~) <p~ 
<X 

- c V~~[Hr'), p(O .. cr"' +F""'J•f(r')] dr'}dr; 

H(2) = 1/2 ~ ~ [7t; + c2<p"' ()(2- ~) <p"] dr. 
"' 

As was shown in Sec. 1, and in reference 1, Eq. 
(12), the zero field Cf12, n: ~ must be found from the 

condition < n<l}> = 0 (if degeneracy is absent; 
see above), i.e., in case of Eq. (13): 

7 A. I. Akhiezer and V. B. Berestetskii, Quantum 
Electrodynamics, GTTI, 1953, pp. 150, 130, 442, 126. 

8 J. Schwinger, Phys. Rev. 82, 664 (1952). 

(K2 -~)<p~ = CV;/c) ~([~', ~O,:f'J>dr'; (15) 

"'~=cV;~<[f', ~F"q>'])dr'; 

•ll' = ·ll (r')· . . ' 

Here <l ';j, fJG .. t/1] > is the mean value (diagonal 

matrix element) of [ ';j, f3Grxt/l] as a function of 

the state, which depends on the occupation.number, 
It is not difficult to show that the condition 
<n< 1>> = 0 will be satisfied in this case also, if 
h .. h . f 0 0· t e averagmg 1n t e equations or Cflrx• n: .. IS car-

ried out only over the spin variables: 

(K2 -~) <p~ = (v;-; c)~([~', ~0"1\J']tdr'; (16) 

~ = cv;-~ ([•f', ~F"I\J']t dr'. 

If tjJ and f are eigenfunctions and eigenvalues m m 
of the equation 

with cp~ and n:2 from Eq. (15), then, substituting 

the expansion tjJ =~(.a t/J(+)+ b+tjJ(-)) in n° 
m m m m m 

(14) (see reference 7), we evidently obtain: 

H 0 =] (atz amEm- bmb"%. em). 
m 

Here we find from Eq. (15) 

(K2- ~) mO = u· ) 
T«. a vac 

(18) 

(with an analogous equation for n: 0 ): n+ =a+ a ; 
oc m m m 

n~ = b! bm. The mean value of the current in the 

vacuunij .. )vac' as is known, is given by 8 

In the equation for ( ioc) v ac we have undergone a 

transition from U (r- r ')to the 8-function 
S(r- r '), since such a transition, as is well 
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knoWll, does not lead to additional divergences 
( sp denotes the diagonal sum over the spin 
indices Goc = U (r- r ') Goc ). -

Since <[ ~' f3Goc¢] >5 has a complicated form 
if the method of second quantization is used, then 
it is expedient in the case of Eq. (16) to return 
to the method of configuration space: 

( K2- ~) cp~ = (/·oc) + y411 ~ <G . >S 
v ac C i oc, (19) 

(and analogous equation for 11~): 

(joe )v'c has the same form as in (18), and <Goci >5 

as in \4). 
It is not difficult to show that the interaction of 

the nucleons (and anti-nucleons) in E q. (18) is 
substituted for the self-consistent field, in con­
trast to Eqs. (16) and (19). This is explained by 
the fact that the operators ¢+, 1/J, as well as the 
spin operators Toe, a.k, f3 enter into H 0 . Therefore, 

the averaging in the equations for cp~, 11 ~ in the 

case of Eq. (15) is carried out not only over the 
spin variables, hut also over the occupation 
numbers. In Eqs. (16) and (19), the averaging is 
carried out only over the spin variables; they 
entirely correspond to Eqs. (4). If the system con­
sists of a large number of nucleons (for example, 
the nucleons in the nucleus), it is expedient to 
n~ Eqs. (15) for cp~. 11~. In this case, however, 

we must add the usual condition for the appli­
cability of the self-consistent field to the condi­
tion of applicability of strong coupling, given in 
Sec. 1 and in reference l. In our problem we can 
obtain this condition by comparing the correction 
for the '!'-functions with the '!'-functions of zero 
approximation. 

The perturbation theory for second quantization 
of the Hamiltonian H = n<o> + H(l) + n<2> is 
entirely similar to the perturbation theory developed 
in Sec. 1 and in reference l. Expressing the 
complete lJ'-function of the system in terms of the 
eigenfunctions of the Hamiltonian H 0 : 

'Y n == ~[X~ (cp"') Ont+X' nt(cp"')] W~t (nm), 
l 

we obtain an equation for x 0 which is similar to 
n 

Eq. (7). It is evident that the anharmonicity of the 
field of real mesons Cflac; is ;connected with the 
presence of the vacuum as well as with the 
absence of the vacuum, and appears only in the 

second approximation 1/g2 . Consequently, the 
anharmonicity of 'floc is small in the case of strong 
coupling just as in the case of weak coupling5 . 

We consider the zeroth approximation of per­
turbation theory for one nucleon which is located 
at a positive level. In this case the field cp~. 11~ 
is defined by the Eqs. (19). 

The eigenfunctions of the Hamiltonian H0 can 
easily be found, since Eq. (17) for the function 
1/Jm' by which we can expand the second quantized 
functions 1/J and ¢+, depends on the operators.p, r 
and the spin operators Toe, a.k, f3 just as Eqs. (5) 

and (8) in the absence of the vacuum. Therefore, 
diagonalization of (17) and the spin variables is 
obtained in the same way as the diagonalization 
of ~q. (8) in Sec. 1, and the solution has the form 
up.e' k·r . However, inasmuch as the equation for 

the field cp~. 1T~, because of the term with (joe )vac 

have some other form than in the absence of the 
vacuum, then the integrals analogous to Is and 

I P are also proportional to g2:hencetheywilldiverge 

for a--> 0 differently than was shown in reference 1, 
where the vacuum was not considered. If we intro­
duce the corresponding integrals in the form of 
numerical parameters, ignoring the character of 
their divergence, then it is not difficult to carry 
out calculations in the first and second approxima­
tion of perturbation theory, i.e., to compute the 
scattering cross section of the mesons with 
nucleons and the interaction of the mesons among 
themselves. This problem will he considered in 
another work. It should he noted that the great­
est difficulty is presented by the calculation of the 
interaction forces between nucleons (in zeroth 
approximation of perturbation theory). In order 
to estimate the internuclear forces, we must 
solve Eq. (19) for n =I= 1 and find the form of the 
function cp~ ( r). 

We now return to Eq. (19) for a single nucleon. 
The average current in the vacuum can be ex­
pressed by the Green's function of the Dirac 
equation 8 

0 (x, x') 

= i (c1it 1 <T (~ (x)~ (x'))).; 

x = {r, ct}; 

T is the symbol of the T -product 7 : 
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(20) Expanding1i y5g'.Iyk Tcr.ak Clloc(m 2c 2 + p2 + (g')2 

+ F"" lla)l a (x, x') =a (x- x'); 

icn sp [~a" a(x, x')lx·-..-; 

Schwinger8 has pointed out the method for the 
computation of the mean cUITent in the vacuum, 
i.e., the Green's function of the Dirac equation 
without appfi~ation of the theory of pertUfbation 
for the case of a constant electromagnetic field. 
This method was used by Malenka 9 in the case of 
a constant neutral meson field with pseudoscalar 

coupling in the presence of a given current. We 
now attempt to take into account the· change of 
the field Clloc in space. By way of an example, we 
consider a charged field with pseudoscalar 
coupling. In this case the equation 8H /8 <p~ = 0 

(see Sec. 1) for cp~ has the same form as Eq. (19), 

but the current of the nucleon ioc,., in view of the 
presence of degeneracy, will not equal 

2Y.." <Goc>s. We first find G(x, x'): 
c 

a (x, x') = c-l (rp + me 

9 
B. Malenka, Phys. Rev. 85, 686 (1952). 

~.m2)-l• • d . h ( -1 x ~ -vix m a power senes an notmg t at AB ) 
= s-I A- 1 ' we find 

Q (X, X1)=c-1(mC- jp (21) 

- ig'·f5E'ta <I> .. ) ~ (a-1bt a-1 o (x- x'); 
n=o 

j .. (x, x') =in V 4'1t sp r~ a .. a (x, x')] (22) 

- ig'rs E 't~<l>~) ~ (a-1b)" a-1a (x -x') J. 
n 

In the calculation of the spur in Eq. (22), after 
multiplication by y 5 ~ all terms of the row are 

zero, after multiplication by T.c Tf3, the terms of the 

row with odd n are zero, and after multiplication 

by T..:YsYk the terms with even n are zero. There­

fore, we get from Eq. (22): 

. ( ') = ~ (g')21i. [<~> J .. X, X i c ex 

+in ~Pk (m2c1 + p 2 

k 

+ n2(g')2 ~a/, <I>~ (p2 + m2c2 
h.~ 

X 3(x-x'). 

If the field ct>oc is changed slowly, then: 

(23) 
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(24) 

ft = - i 8 (g')2Ji[lcf;l . .. 0 Cl' 

() = -n2 (g')2 ~ ah ¢;1~ a-1 i}h¢;1~. 
h.~ 

Using the identity 
co 

A -1 = ;i ~ (eiAs _ e-iAs) ds 
u 

(see, for example, reference 7 ), it is possible to 
write Eq. (23) in the following form: 

j,. (x, x') = .S(g;~2'1i {¢;~,. +in r. Pt< ~sin [(p2 + m2c2 

0 

co 

+ (g')2 ~ ¢;1~) u] dtt iJk¢;1,.} ~sin {[P2 
~ 0 

+ m2c2 + (g')2 ~ ¢;~~ 
~ 

co 

+ n2 (g')2 ~ ah ¢;11> ~ sin( (p2 + m2c2 

"·~' 0 

If A and B are noncommutating operators, then we 
have, with accuracy to terms of first order in 
£"'AB-BA 10: 

(25) 

For a slowly changing field, we can consider 

[ p 2 , I. <1l ~] to be a small quantity. Then, using 

Eq. (25), and expressing 8(x- x') in the form of 
a Fourier integral, we obtain the zeroth term in Eq. 
(24), corresponding to a constant field <ll .. : 

10 R. Peierls,Z. Physik 80, 763 (1933). 

4 ( ')2'/illl 00 

·o< '> g ,. r [ . < 2 2 J"' x, x =- c (27t)' ~ exp {Ls m c 
0 

ClO 

- exp {is (m2c2 + (g')2 'f.cf;l~)} e-isp•] ds) exp 
-·00 

4 

X { i] kt (x;- x;>} d 4k. 

Evidently~ 

4 

exp (isp2 ) exp (i] k1 (Xi- x;)) 
3 4 

=exp[- in2 (,fk~- k!) s + i] k1(xt-x;)]. 

Integrating over d4k, we find: 

j~ (x, x') = <;~: ~~2 ~ sin {L m2C2 + (g')2 r. cf;l~ 
0 

+ 48~2 ( (r- r')2 - c2 (t -t')2)] s } ~<;_; 
u a. (X' ),v ac = j,, (X' X' ).\'=X'• 

For x "'x ', the integral over s is easily computed 
with the help of differentiation with respect to the 
parameter (the small quantity s 0 must be sub­
stituted for the lower limit); 

[1 -j-ln(so (m2c2 + (g')2 ]¢;~~>)]; 
~ 

(26) 

"'( = 1,78. 

In the case of the field <p~ we must assume <ll .. "' <p~ 

in Eq. (26 ). We see that a logarithmic divergence 
appears in Eq. (26). The other terms in Eq. (24) 
can be computed in a similar manner. If we limit 
ourselves to second derivatives of <fl2 (which are 
necessary for the renormalization of the meson 
mass), then only in the first member of Eq. (24) -­
f0a-1 --must one consider the second component 
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of Eq. (25) in the expression for a- 1; in there­
maining members of Eq. (24), one must keep only 
the first component of Eq. (25). This method of 
obtaining the mean current in a vacuum can easily 
be applied to the case of pseudovector coupling, 
when cp~. n:~ are defined by Eqs. (19). In the 

same manner, we find the Green's function 
G0(x, X') which Corresponds to the Constant field 
rr ... ell .. : 

ao (x, x') = (2!lc (me- TP + fPTs E 't~ II:3) f sin 
0 

X [ ( m2C2 + j2EII3 + 4: 12 (x- x'P) s J :: ; 
f =· g V 47tf(xc). 

We can then find the mean current in the vacuum for 
the momentum rr .. - g .. : 

(27) 

Close to the nucleon, it is not possible to con­
sider the field cp2. n:2 to be changing slowly. 
Therefore, for the investigation of the behavior of 
cp2,"n: 2 in the neighborhood of r 1( r- r 1 -+ 0 ), it is 

appropriate in the exact equation for j .. (x, x ')(23) 

and g .. ( x,x ') or for G (x, x ') (21) to substitute 

the solution of the equation of the field (19) 
(or SH / Scp2 = SH / Sn:2 = 0; see above) in the 

form of a functional of j .. (x} and g"'(x ). 

For the computation and later renormalization of 
the mass of the nucleon, the equations for n:2 and 
cp2 must be solved. Renormalization of the meson 
c.harge of the nucleon can be carried out 8 •9 on 
the basis of the expressions for j .. (x) and g .. (x). 

Translated by R. T. Beyer 
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