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The Hall coefficient is calculated for ionic semiconductors. The interactioh of the electron
with the polarizing vibrations of the crystal is considered both in the adiabatic approximation

and the weak coupling case.

1. INTRODUCTION

THE cal culation of the Hall coefficient R is usually
carried out by meansofthe solution of the
kinetic equation. Mowever, as is pointed out in
references 1 and 2, the quantization of the energy
spectrum of the current carriers in crossed elec-
tric and magnetic fields £ H remains unstudied.
The problem of the present research was the cal-
culation of the Hall coefficient for an ionic semi-
comductor by the method of stationary states?,
which allows a consideration of the quantization

of the energy spectrum by the fields £_L H( E|| OX,
H || 0Z).

The following expression is obtained in Ap-

pendix II for the Hall coefficient R:
R=—jyE.(jy+ 2 H, )

where] ) ] are the currents, in an unbounded
gyrotmplc layer, along the axes OY and OX. As
noted in Appendix II, | i, | >1j, | usually, since
the current j_ is proportlonal to a small parameter
which charactenzes the weak coupling of the cur
rent carrier with the phonons which scatter it.
Therefore,

1 E
To compute the current j we need a concrete

model of the semiconductor under consideration.
For example, for the simplest solid, in which the
ctérrent carrier is an electron with effective mass
u' ’

-j: —_—

Jy =+ eNgy, (3)
where N is the number of current carriers [in
semiconductors N, is a function of the temperature

Ny=N(T)1:y=—cE/H=-0
component of the velocity [ the upper sign in (3)

is the mean y

'S, Titeica, Ann. Physik 22, 129 (1935).

2 M, I, Klinger, J. Exper. Theoret. Phys. USSR 26,
159 (1954) .
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refers to holes, the lower to electrons l.
Therefore, in thls model, we obtain from Egs.

(2) and (3), for | j ¥ |>|]x|
R+zI 1/N, ec. (9

In the presence of combined conduction,

iy +7y E
R=——————F (5)
Uy +7y) + Ui +iy)
¢ N_—N,

[(N_—N+)2[;—22+ (N+E++N_E_)2] ’

where 17_, ’1:+ are the mobilities of the electrons
and the holes.

The case of small | N_ — N+ |, i.e., semi-
conductors with a small amount of impurities, re-
quires a special investigation, because, as fol-

lows from Eq. (5), it turns out that | j + i |

<ljt+j: |mth1scase,evenfor|] |>>|] l.

2. THE HALL EFFECT IN IONIC
SEMICONDUCTORS WITH WEAK COUPLING

We now consider the Pall effect in an ionic
semiconductor in which the coupling between the
electron and the optical vibrations is small.

As is given in reference 2, the operator of the y
component of the velocity is defined by the rela
tion

Uy = 1(Py+poox—EhfyEE), (O

where P =p, + pX frf f tf is the component of
the operator of the total momentum of the system;

& ¢ are the operators of emission and absorp-
tion of the optical vibrations; w, = e/ pc. Carry-
ing out a canonical transformauon of Eq. (6)%3

Ef—>Cf=Ef—'“f,

3 S. B. Tiablikov, J. Exper. Theoret. Phys. USSR 21,

16 (1951)-
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where
h % -
o=—Ay(ho + 57 4 mf,— 2 pp)7,

1 l/21rhcoc'e'
A= vV

14

c

2~

1
===,
ny

@ is the limiting frequency of the optical branch,
we obtain the following expression for the y com-
ponent of the velocity of the current carrier:

Uy = 1: {Py + poyx — Zhf, | oy |2 V)]

— Thfy (G + of T}

Averaging ¥ over the unperturbed state of the
system, we get the following expression for
o _ ).
v, (a;=af):

-
Vy = E-{Py“*‘%‘moxO—'Ehfy“}}’ (8)
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where
2nhwc’ e?

Jy:"“‘—Tthy/fz

L %
<h“o+ —27 + hTfy_ '!_; szz)z-
We calculate ]y for the special cases (1) w

>py?/2 and (2) K <% py?.

D) #o>% pyt

We change Eq. (9) from a summation to an inte-
gration and limit ourselves, in the expansion of
fy inr powers of y and P, to terms of order y

andPi (forpzz<2p | Fe —'/2;ty2‘);we get

, 10
Jy=—@/p) (L + JiP), (10
where
’ 52 [ m 52 l/—
~ 0 ® ~—0 i
Jl“"ml/m’ JIN 160k m*
[/ 2mc’ehe |/ 2m [ho—uy?/2 | Ve is
0= \Ro—uyer ¥ o) <

‘the small parameterin the theory of weak coupling %’ 3.

2) frow <% py?

n this case, in the transition in /_from a sum-
mation to an integration, we must obtain the in-
tegral in the form of a principal value; this amounts
to a neglect of the finiteness of the lifetime of the
stationary state considered in the given approxima-
tion 3. For the calculation we express ]y in the
following form:

(RF, — vy) (dF)

P
or, after making the substitution > Ty =—-_%
ek o
-
Hog
Vy = —1 +J,, 9)
fece? ¢
Ty == Gmps 2
( N S
Ry
where
P2
— o Wz
A=ho—S5 — <0

By means of an expansion of the integral in
powers of y and Pz, we obtain

Jy=—w+sip), (12
where
A af(hei Fi(’i‘i)‘“
Jo=—gupe (u‘r”/ o= 28hm\w2 ’

Substituting the expressions for J y from Eqs.
(10) and (12) in Eq. (9), we get

D) ho>py2/2;

_ 32 I e2 r—
~—~ll— 221 _° /¥ pa).
Uy = ‘(l 481':Vm +1ﬁOy.‘hmV m P_f),(13)

R A I

2 p2\2’ (11)
ke F

2u. J

2) ho<py*/2;

— 4e? [hw\* .
v =1+ 5 () +

28¢ (ho\'s 2] (14)
pho (wz) Pz]'

It follows from Egs. (13) and (14) that in this
model » depends on the state (on Pz); therefore,

in the calculation of the macro-current iy =—eN<i);>
(the symbol < > denotes the statistical average of
v, over the states), we must compute < P2> As
is shown in Appendix I, the equilibrium distribution
function over Pz for the carriers has the following

form in the weak coupling case*

* A misprint appears in the expression for T} in our
earlier paper [reference 1, Eq. (4.5)].
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b Bo o)

T, T<™, T,=j 2—[(75 In2)
hal Yl
——4/.’2'1.'-’![)‘:]3] /:

, iy P2\

£(P) = @mp hT) " exp(— =), (19

2u, kT/’

where # is the effective mass of the quampam cles
moving dong OZ. We obta.m the expression for

p” from the expression for u by substltutmg
ity —{exp< i >—1 ]"1 for

n, (see Appendix I).
Restnctmg ourselves to the case T,< T<to/k
and assuming that <P2 > = K, 1T, we obtain the

following expression for
Jy=—eNCyy =y +j, 15
=+ ecN,(E|H):

1) ho >1pi?:

. 2
een, L (5T 1)
Jy ~—+ech + H (487': m
__ kT / © U-;i
f60mhe 0 V'

2)  ho<'y py*:

re (17)

Hay

e £ 4e2
J'y =+ ecN. {T(

)
2)

28 kT ho \*. gt
+ 7iw g (y_i.Y2} .

“ei

If we substitute i, from Egs. (16) and (17) in
(2), we get in the two cases:

1) hw >1/, p2, '/y'> [jel:

R.= +

1
Niec

2) ho <[y pr%

___28/?1( fo \\'/2 Fe
o \y.iy2 / By °
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It follows from these equations that:
1) N, R, depends on T and on y = cE/H.

2) R;is_determined by different expressions in

the two cases rw > py%/2andtw <py?/2
We now return to the consideration of a semi-

conductor with combined conduction. If N_>> N+
ocrN. >N ,or
+ -
s +Jy | >/ +jr | and
EAARS Py P
then
R~ -—1]/ec(N.— N,). (20)

We take the case of a semiconductor without im-
purity (N_=N_).

In this case the expression which defines R de-
pends on the ratio of the two quantities | j +

 r ~+ - 0 -
7 L and | j}+j7 1, since j%F +° -0
For [jF+j 1> +f’;|,N+=N_=N.
R~ ecN ’1 kT (21)
(o, (H)+o_ (H)}® 21 (24 som.,)

B+ e wy?
(l/ l/lll> fO[' hb.)>—2—,
where o, (H) and o_(H) are the conductivities of
the hole and electron currents in the magnetic
field.

In this case R is defined by the relation of the
effective mass p and the conducnwtles o, (H)
and o_ (H): for large # ( Fwy > kT ), j (H)
changes as exp (= Fw /2 £T) with increase in H,
and R~ exp (Fwy/2kT).

Intheothercase,lj +j |<|] +] =,

N_ N =N,
1 2z 1 kT
R—W‘eg—{(ﬂ_ )

80hae (22)

VEN

Here R (in the approx1mat10n used) depends
weakly on H fortw >% 5 py’.

Thus in the case of a semiconductor without im-
purities (V_=N_) the Hall coefficient R has the
following form :

1) fort wy, > kT, and with increasing magnetic
field, R varies as ~ exp {‘ha) /2kT }up to

M o B
x x

x (&

the point where the current | J
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exp { —fawy/2kT }is no longer less than the

current | j;++j’; | for a certain H =H,.
2)ForH>H andfw>% 1y?2, R depends weakly
on H (u'ei, p4 depend weakly on H).
3) R depends on T fundamentally as N(T)
~ exp ( q}chem/kT) (we can show that all the re-
sults obtained are valid for | q)chem | >4 wy/ 2).
For semiconductors with composite conductivity
and an excess of one type of carrier, R is de-
termined by Eq. (20). The same equation follows
from kinetic theory *. However, while it is valid
in our case forlj;'-i-j; | > ]':+]'; |, in the

kinetic theory it holds for|j1'|> ij:lmd
iz 1> 15 1 i for LjE T+ 151> 157
+1i5 1

3. HALL EFFECT IN A POLARIZED
SEMICONDUCTOR

We make use of the results of reference 5 and the
calculation of the Hall coefficient by the method
of stationary states for polarized semiconductors.
As before, we must find an expression for ?Jy. In
this case we separate the translational '1}’('1) and
fluctuating ?)(i parts:

Uy = (’v.v) + 'Uy))» (23)
() i o0 A (2)
Uy = ony T 9 Uy = gy,

-
wherer=q+ A, q( q, qzqa) represents the trans-

lational part®:® of the coordinates of the el ectron
and X its fluctuating part.

In zeroth approximation® the states of the system
are charactealgged by the wave functions

U0 = exp {(i/h) (Pyqs + Pzqs)} (29)

% Hu(gr— g10) 0¥ (3) H Oy (ny),
f

where qg -eE/pw %, n is the quantum number of

the “magnetic’’ oscillator, N is the
number o% the fluctuating motion in the polari zation

potential hole of the polaron, in accord with the
ground state of the polaron, P is the total momentum

4
B. N. Davydov and I. M. Shmushkevich, Uspekhi
Fiz. Nauk 24, 21 (1940). Pt

S M. L. Klinger, J. E T
L ger, J. er. Theoret. Phys. USSR 26,
168 (1954). P Y

6 . .
S. V. Tiablikov, J. Exper. Theoret. Phys. USSR
377 (1949) ikov, xper. Theore y s 18,

~
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of the polaron. Fere H, = o q, (p)‘2 +pwy Ay)
[reference 5, Eq. (4) 1is considered ‘as a pertur-
bation, since (K Von ™~ (g, -~ VE/ /0
~e <15,

With the help of Eq. (24), we average ‘l/l\y and
obtain*

Uy = @ (g1 + Xy) =04q? + ak, (25)

T + g (A1),
where

Mwv = S lFl.v A Fw (@),

As is seen from references 5 and 7, the quantities

(A)yn for the weakly perturbed states N of the

discrete spectrum of the polaron whose potential
well coincides with the ground state ¥, are al-
most one and the same (in order of magnitude ).
The states of the more perturbed part of the
spectrum are not generally taken into account in
the calculation of <( AI)NN >, since the corres-

ponding Boltzmann factors are much smaller®.
Therefore, we make the approximation

{(q)vnd> = ()00 = 2““2[{;315, (27)
where Rﬁ = flﬁls(/\) A Yo (M) (dA). It was

shown in reference 5 that a., is coupled with the
polarization of the polaron I'j in its ground state :
o Rﬁ =-(I/2e) E. Consequently, we get
from Eqs. (25) and (27) :

Jy.=—eN {vy)> = eN_{(1 —v_ry H?), (28)
where
y_ = Fo_/282, ro =¢e® / v 2.
(For the holes,

j;_ =—eN.7(l ——v+r(,*“H2),

where v, = r:,'/2e2, ry = e2/p+c2.)
The calculation in reference 5 of the spectrum
of the polaron in crossed fields £ LH was carried

* In the calculation of By in the following approxima-
tions, we must take a more accurate wavefunction.
7S. 1, Pekar and M, F. Deifen, J. Exper. Theoret.
u.

Phys. USSR 18, 481 (1948); S. Perlin, J. Exper.
Theoret. Phys. USSR 20, 274 (1950)-

8 S, I. Pekar, Investigation of the electronic theory
of crystals, GTTI, 1951.
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out only for such £ and # which produce slight
changes in the polaron well[ H <H

~( = | J [‘P ])2, reference 5, Eq. (17) 1. Itis
easy to see in such a case that, from Fq. (28) the
polarization part of the current is

.+ .
| A]y' |=eN+ yvir'gHZ <|]°yil =eN,y. In
accord with Egs. (20) and (28), for ij > 1,

R,~— Lt !
=T jtH Nyec(t—v, riH?) ()

In the case of polaron semiconductors with
composite conductivity there can be two cases
which we consider separately.

D L iy 1>+ 7
Rz—é—:—[/\’_——l\ﬂ_ (30)

— (VN_rg — N, rd) H2

~ ~o
We note that for # <u+/ V+cr'g (u+is the

mobility of the current carrier in the field H.LE ),
i.e., for | A]—l <i] l—eN+y+E Eq. (30) is

Valldlle_—N+|>(H/C)INN_+N+ +l If
H >H z'zfi/v icroi, i.e., IAjf|>|j£|,thmEq.
(30) is valid even for _=N_=N. In that case,

R~ —1]/NecH?*(v.ry —v, ro) (31)

ForN_=N ,the sign of R is determined by the
ratio of the effect mass of the electron p_ and of

the hole #,> since
(=]

. &2 w\2
V.l — v, ro = B—”Ez [(m)

where B is a constant which is different for dif-
ferent materials.

2) For H<uy/vypery and
|N.— N | <(H /)| Nas. +Nyaa. |,
[J§ +Jy1<|j¥ + jx | and R is determined from

the formula

R — ¢ IN_—N.—H*(v_ N_r0 ——v+N+r )l (32)
NETE e(Nou, + N_u_)?

or, fOI‘N_=N+=N,

‘—V+"§A)

eN (uy (H) + u_ (H)?

c(v_ ry

R=—

CONCLUSION

In the present paper the Hall coefficient has been
calcul ated for ionic semiconductors, considered
both in the weak coupling approximation and in the
adiabatic approximation. The method of station-
ary states was used, i.e., the calculation was
carried out without use of the kinetic equation.

The difference between our equations and those
following from kinetic theory are most marked for
N_=N_ i. e, in particular, in the case of a
semiconductor without impurity. For example, in
in this case, for a polaron semiconductor, R is de-
termined by the ratio of the polarizabilities of the
electron and hole polarons.

APPENDIX I

We find the equilibrium distribution in Pz - f( Pz)

with the aid of a Gibbs grand ensemble; if the
energy of the system is given by the expression
E =E (P, Py, ng, nf), then

fPy= 3 exp(—yE) (1)

Py, e nf
E ) —1
(/4
exp (* kT }

x 1 3
Py, ‘Py, LV
If we substitute in (I.1) the equation for £,
computed in reference 2 with accuracy to €2
[Eq. (25)], we obtain (keeping the notation of
reference 2)

f(Pz) = Dexp ( o 2kT) W, W, 2
where
+ %Eflzfzz ng ny, + 2oy (f) ny
+ 2PIEC, (f) ’lf]};
W, — Stexp { 29 [hay + 2CyPE + < aﬂ} (I.3)

(33)
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o

p=p(l+2uC) % D =exp|{— 2}
- E -1
x| 3 ew(-z)]
Py, Py, Ny 1Lf
The quantities o, oc2(f) €. C,(f), Cyare

obtained by an expansion of AE in reference 5
[Eq (2.5)] in powers of P (w1th accuracy to P ):

l\.r

AE = 2%y (f) iy + 2P3EC, () ny, (1.9

E = (AE)p— + 2CsP%,

AE = nyo; + €2n,,C, P2,
We return to the calculation of W,; inasmuch as

€ <1, we can decompose W in powers of e:

W, =7 W (L5)
' P( ZP Zp ) ’
where
1
Zr= 3 {—[26 (Hn
-..nf.--

+ 2—7‘:}2}‘12]‘22”!: ng, J}

is the statistical sum of the system of quasi-
particles € “(f).

W, g2 - W (I.6)
Z_

1 & . W
L= — £5C, (/) g
€2 —
= ﬁz% (f)ng,
since, by definition,

ny = % 2 npexp {—gif [2@5” (f) ns

...nf...

+ g B far 11 ]}

is the equilibrium value of the occupation number
n;, computed in reference 5. Consequently,

W, = Zrexp {— - [PYEC, () 1y

+ 2, () 171}

M. I. KLINGER

By analogy,

e_h"’o/hr)_J.eXp{ _ e? ﬂo (pzc + al) ;( 7)

Here we mtroduce the %thbnum number of os-

Then it

W, (1 —

cillator quantan 0 =lexp ;7 ET ~ 1171
follows from Eqgs. (I.1)-(I. 7) that

J P2
f(P;) = D,Zpexp (—2@*;”) :

e

(I.8)

where

Dy =D (1 — e hoT)-165p {— ’% R

+ 22, () )}
#, = 1 {1 4 2pe? (Cung + EC, ( f) iy + Cy)}?

(p, differs from the p_ in reference 5 by the fact
that n, is replaced by ny)
Making use of the expressions for #,(T), com-

puted in reference 5 [Eqgs. (4.5), (4.6)], we cal-
culate Z1°:

2k2T2
Zr —eXp[—m] for 0T < Ty,
83 'fsT‘/:
Zp = _ me BT e
T exp[ 10h ("‘)ao lﬂ 2)!/a ] T1< Té ,
where a, = 27;,'[2 ﬁf (7).

Consequently, for 0 < T < Tl’

P2 2
Py =D _ 2 n2kT L.
F(Ps) lexP[ 2u kT 12ha§le—“z|] 19
and for T1<T§v"l a)/k’
F(P:) = (2mpokT)"1 exp {— P}/ 20k T}. (1.10)

APPENDIX II

In the method of stahonary states, we initially
calcul ate the currents T ] in an mflmte gyro-
tropic medium (taking into account the quantization
of the spectrum of the system in the crossed
fields £ LH), and then these T j, are substituted
in the expression which connects the currents j,_,
j, with the Hall coefficient R and the resistance
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in a transverse magnetic field, p. In this case,
we introduce the tensors of electrical conductivity
0,, and electrical resistance p;, in a gyrotropic
medium (i, & = 1, 2) and employ the local ratios
of the fields £, Ey and the currents j_, Ty apply-
ing them 1mt1ally to the case of a crystal "bounded
along OY (] =0), in order to establish the con-
nection of p "and R with P @d o, ; then we con-
sider the case of an unbounded gyrotropic crystal
(E =0), to connect R and p with the currents
Ty and j, computed with account of the quantization
of the energy of the system in the field E LH. This
can be done since the relations

2

2
Ei = D\ oninand Jji = X ouEn (i k= 1.2)

k=1 k=1

are local relations.

As is shown below, the ordinary expressions
for'pand R(p=j,E)/ji+j2), R==j,E/(j?
+]5 2 )are obtained only if the Onsager relations
are satisfied: 0,,(H) =+ 0,, (= H), p,, (H)
=P, (~H). There are cases for which the On-
sager relations are not satisfied, e.g., if 0, and
0,,(and also p,,, p;,) depend not only on 4 but
also on the extemal field E | (the local relation
between j; and E; remains valid as before). In
such a case, because of the axial symmetry of the
system in the field #, p,; = p,p=p, 0, =04,
=0, but py,=p"# - pyy amdo,,=0"=# ~-0,,.
In Sec. 2 of this paper we considered such a case
(o <% py?).

We can set py; =—p '+ P ,0,,==0"+7 ,

where p = pyp+ P31, T =015+ 0y
Then

Ey=pji +0"s Es=(—p"+ {j)jl +oj,; (IL1)

J1=3Ey+3'Ey, jo=(—3s"+ QT) E,+ 352(11.2)
We first return to the conclusion of the expres-
sion for R: for j, =0, E2=+(—p'+ )i
=RHj ,i.e.,, RH=~p"+7"
It follows from (I.2) that
¢ —o

RH = —p' 4+ gs= _
p+o Fr @ —op i

(IL.3)

but for E2 =0 it follows from (I.2) that
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o=j/Ey, o —o=—j,|E,. (IL.4)

Therefore, (II.3) reduces to the form

R—=—

This is the general formula for R.
If5 =2 7, (as is the case in the present work

E. — -
BO G+ B—5),E, + EY (L5)

for# w <% py?) with accuracy to €2 < 1 we obtain

inclusively [for | is | > i1 I,Riz Rbts +( Nif:c)'1
with accuracy to €*

Consequently, for | j, | <|j,|=1j%+€%%|
R~ —E,|j3H = R,. (IL7)
For | j, |>]j,|
R~ — (Eyj2 [ iH) — *Epja | i - (IL.8)

We begin consideration of the expression for the
resistance in a transverse magnetic field H LE .
It follows from Egs. (Il.1) and (II.2) that

s (I1.9)
o2 + (¢’ —0)% + o'c

= lel (l _
.2 + °2
J1iTJg \
If 3~ €2 < 1, we obtain ( with accuracy to €2
inclusively) :

jeEy — o?E2 ) —1
2+t

for‘j2|>|i1‘:

\
o;:-,p"(] 4 g2 ‘}f ’),

for | jy 1>1j,1:

~p(1+ 2""“5‘),

73
whence

p° = JiEy [ (i + Ja)-

It should be noted that if the Onsager relations
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are satisfied and P =G =0, then, in correspondence

my gratitude to Professor A. G. Samoilovich for
to the above,

suggesting the work, for his valued advice and
constant interest.

R= _ijx (./3: +_]'§)—1, 4 =ij.» (_/,3 + ji)—d'

. . T R.T.B
In conclusion, I take this opportunity to express 2§3m51ated by eyer





