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Ginzburg for suggesting the problem and for his 
assitance in the work. 
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JN Landau's work 1 there was developed a 
hydrodynamic theory of the formation of parti

cles resulting from the collision of high energy 
nucleons. As is known, the resolution of this 
hydrodynamic problem concerning energy spread 
into evacuated space consists of two parts: wave 
motion and a nontrivial solution2. 

As regards the problem of multiple formation, the 
main role in the angular distribution of the 
particles is played by the nontrivial solution 
region, since it is here that the principal portion 
of the entropy of the system lies. The approximate 
solution of the problem of scattering, given by 
Landau, represented an asymptotic expression of 
the nontrivial solution of the scattering section 
remote from the boundary region separating it from 
the moving wave. In Landau's solution the latter 
was completely ignored. Accordingly, the question 
arises as to how far the disregard of the wave 
motion is justified when computing particle angular 
and energy distribution. It is to the examination 
of this problem that the present letter is devoted. 

For the entropy S and energy E of the wave 
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Here l is the longitudinal extent of the system at 
the start of the scattering, mT~ 4/3 €. u 2 and 
nT~s u are the densities of the enefg{ and 
entro~/of the wave, T 0 and V 0 are the initial 
temperature and volume of the system, n and mare 
constants. Integration is effected over the entire 
region occupied at the given moment by the moving 
wave, that is to sav. from the boundary line it. 
shares in common with the nontrivial solution 
section x to the leading edge of the wave x = ct. 

It shoufd he noted that the coefficients before 
the integrals in (l a) and (l b) represent respec
tively the complete entropy and energy of the sys
tem. Therefore, the portions of the entropy a. and 
the energy {3 contained in the moving wave will he 
equal to 

E cf/l 

(3 = EP ='; \ e: u2d(x) 
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where u is a component of the four-velocity of the 
elemenl 

Taking into consideration that u » l and 
making use of the Riemannian solu\ion for a simple 
wave function, we can express €. , sp and up as 
follows P 

e: = [ (ct- x) (c- c0 ) ]2C0 /c 
P (ct + x) (c + c0) ' 

(3a) 

sp = 4f3 r~~Jcf2c, 
ct + x c +co • 

(3h) 
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where c is the velocity of light and c = c/,/3 the 
velocity of sound. Substituting (3a), hh) m1d (3c) 
in (2a) and (2h) and introducing a new variable 
z = (ct- x )/l, we obtain for a and ,Bthe following 
evident expressions: 
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X ~ ((2 ct~ l) z) dz. 
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(4b) 

The magnitude of z 1 is determined from the 
condition of continuity existing at the boundary 
line between the nontrivial solution section and 
the moving wave. If for the nontrivial solution 
section we use Khalatnikov' s method 3, we shall 
easily obtain an equation for z 1 as follows: 

( 2ct (2c,-c)f(2c,+c) 

z1 = - 1-- z1) 
(5) 
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Fort we naturally use the critical time tk, i.e., 
the time element corresponding to the beginning of 
the free scattering, when the energy flux density 
and the temperature of the moving wave (or to be 
more exact, at the boundary line separating the 
moving wave from the non-trivial solution section) 
diminish to such an extent that further interaction 
of the particles with each other can be disregarded. 
As to the magnitude of the critical time element 

tk or more exactly, of 2ct/l, it can be said 
beforehand that it is much larger than unity, while 
the magnitude of z 1 is of the order of unity and 
z 1 « 2ct/ l. 

Making use of this fact and applying formulas 
(3a) and (3b), we can evaluate the magnitude of 
2ct/l by expressing it in terms of the critical 
values fot· energy flux density and temperature; 
namely, 

2 ctK c- c0 ,. -(2c,+c)f4c, 
--=-- p 

l co 
(6) 

But 

where Tis the temperature of the medium itself at 
the moment when scattering begins, which tempera
ture it is natural to assume to be equal to uc2, and 

T 0 is the initial temperature associated with the 

.full energy of the laboratory system 

Considering that 

z ~ 2 ctK jl, 

we find that a. and (3 can be expressed as follows: 

4 (c- c0 \ c,f(2c,+c) 
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Substituting the numerical values in formuals 
(8a) and (8b), we find that when the energy of the 
primary nucleon is 

Eo= 1012 eV 

the moving wave carries away 14% of the entire 
entropy and 44% of the energy of the system, and 
that when the energy is E 0 = 10 1 8ev the wave 
carries away 0.45% of the entropy and 1 7% of the 
energy. The absolute number of particles carried 
away by the moving wave, at the aforementioned 
energies, appears to be unchanged, and of the 
order of unity. 

These estimations show that the moving wave 
carries away a comparatively small portion of the 
entropy and a small number of particles, but may 
carry a substantial portion of the energy of the 
entire system. In any case, it is in the moving 
wave that the most energetic particle is to be 
found. It should be noted that the magnitude of the 
energy of the moving wave is easily affected by 
whatever assumption is made as to the nature of the 
particles it contains (all of the results obtained in 
the preceding refer to the case where the system 
contains only 7T-mesons). If we take into account 
the possibility that along with 7T-mesons the 
moving wave may contain also a nucleon4, the 
portion of energy that is carried by the wave 
amounts to 60-70%. 

The results obtained indicate that proper 
~onsideration of the moving wave substantially 
mfluences the estimate of energy distribution at 
multiple particle formation, when the energy of the 
mutual! y colliding particles is "' l 0 1 2 - 1 01 3 ev. 

In. conclusion, we wi~h to express our deep 
grat1tude to S. Z. Belen kii for his valuable advice 
and suggestions. 
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THE distribution of supersaturations inside a 
diffusion chamber, and consequently the height 

and quality of the sensitive layer, depend on the 
temperature field and on the partial-pressure field. 
The temperature field inside a diffusion chamber 
was investigated in references 1 and 2. This 
communication describes a procedure and measure
ment results for the partial-pressure field. 

A special instrument, namely an expansion dif
fusing chamber, was constructed to investigate the 
partial pressure field. The chamber is a glass
walled crylindrical container. The bottom of the 
chamber consists of two glass disks screwed 
together, and is cooled by liquid nitrogen, flowing 
through a spiral groove cut in the upper disk. The 
flow of nitrogen, and consequently the temperature 
of the bottom, are regulated by changing the pres
sure in a Dewar flask with a valve. The cover of 
the chamber is a brass plate with holes 7 mm in 
diameter distributed uniformly over the entire 
area. The brass plate is covered on the top with a 
rubber diaphragm which separates the working 
volume of the diffusion chamber from the volumes 
that connect with the atmosphere and with the 
vacuum system. The expansion is carried out in a 
container located above the working volume. A 
mercury manometer records the pressure in this 
container before the expansion and the common 
pressure in the system after the expansion. The 
degree of expansion is thus determined from the 
ratio of the pressures. The vapor source is the 
surface of ethyl alcohol filling a trough that 
is fastened to the upper cover. The diffusion 
chamber i~ fille4 wjth air at atmospheric pressure. 

Generally speaking, the vapor partial pressure 
and temperature vary with the height within the 
volume of the diffusion chamber. Consequently, 
the cloud produced by the expansion does not form 
throughout the chamber, but only in those regions 
where the partial pressure exceeds a certain 
value. Knowing the temperature distribution and 
the degree of expansion, it is possible to 
determine the partial pressure of the vapor at the 
cross section where the boundary of a dense cloud 

produced by condensation on neutral or charged 
centers is located. By varying the degree of 
expansion, it is thus possible to determine the 
partial pressure field over the entire volume of the 
chamber. 

The temperature inside the chamber is measured 
by a horizontally placed thermocouple, the height 
of which can he changed by means of a permanent 
magnet. The partial-pressure distribution obtained 
by the above method is shown in Fig. 1 (with the 
temperature distribution in the chamber being 
approximately as represented by curve 1 of Fig. 2). 
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FIG. 1 Partial-pressure distribution 
in chamber. Height of sensitive layer is 
15 mm. 

The partial pressure is apparently constant over a 
considerable volume of the chamber, apparently 
because of the thorough mixing of the gas and the 
vapor. The fa~t that the temperature is constant 
in any horizontal cross section inside the chamber 
also indicates that the gas and vapor are thoroughly 
mixed. 

To investigate the effect of the condensation on 
the partial pressure distribution, the chamber was 
irradiated inside with a gamma-ray source in such a 
way that, unlike in the preceding case, the expan
sion caused condensation on charged, rather than 




