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The angular and energy distribution of gamma radiation is found as a function of depth of 
penetration into matter, for an initial energy of the order of several mev. 

T HE investigation of the energy spectrum and 
angular distribution of gamma rays as a func

tion of depth of penetration in matter is of interest 
both for theory and for many experiments and ap
plications, among which we may mention various 
questions concerning dosimetry, design of gamma
ray filters, etc. 

In the present paper the following question is 
considered. A parallel beam of monochromatic 
y - radiation is incident perpendicular on the plane 
surface of a layer of matter. How will the distribu
tion of the y - radiation in energy and angle 
change, as a function of depth, initial energy, and 
the properties of the material? 

The energy spectrum of the scattered radiation 
has been found for several cases, without any 
simplifications, by a numerical method 1 . 

In contrast to this work, an analytic method is 
developed in the present paper for determining not 
only the energy spectrum, but also the angular dis
tribution of the scattered y - radiation. The 
calculations developed in the work are based on an 
equation of radiative transfer of the Boltzmann 
type. The angles of scattering are assumed to be 
small, as is the case for energies of the order of 
several mev. For the Klein-Nishina-Tamm cross 
section, we use an approximate formula which 
gives a good fit to the true cross section. No other 
omissions or simplifications are contained in the 
work. 

In the special case where the absorption ~oef
ficient of the y - rays can be taken as constant, 
this problem has been solved previously2,3 by 
another method, more complicated than that applied 
here. 

1 • INTRODUCTION 

During the passage of y - rays through matter, 
absorption and scattering occur as a result of the 
following three fundamental processes: a) photo-

effect, b) Compton effect, c) production of electron
positron pairs. 

The photoeffect predominates at low energies. 
With increasing energy, the Compton scattering 
becomes important. For still higher energies, the 
probability of photo-and Compton effects decreases, 
while the probability of pair formation increases, so 

that pair formation begins to play the major role. 
The energy interval within which the Compton 

effect is dominant is quite wide for light elements 
(0.03-25 mev for carbon, 0.05-15 mev for aluminum) 
and becomes narrower with increasing atomic 
number (0.2 -12 mev for copper, 0.6-5 mev for 
lead). 

The intensity of the unscattered monochromatic 
radiation decreases exponentially during its pas
sage through matter4 

(1) 

where .,. is the total absorption coefficient. 
Figure 1 (which is taken from reference 4) shows 
the dependence of the total absorption coefficient 
on energy for several elements. We note that for 
light elements, in the high energy region, ( for 
example, for aluminum with hv;:: 10 m0c2 ), .,. can 
be taken as approximately constant. 

1 L. S~encer and U. Fano, Phys. Rev. 81, 464(1951); 
J. Res. Nat. Bur. Stand. 46, 446 (1951) 

2 

FIG. 1. Energy dependence of y - ray absorption coef
ficient 

L. L. Foldy, Phys. Rev. 81, 395,400 (1951) 
3 L. L. Foldy, Phys. Rev. 82, 927 (1951) 4 W. Heitler. Quantum Theory of Radiation 
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In the energy range in which the Compton scat
tering is most important, we can neglect the radia
tion from photoelectrons, Compton recoils and pair 
particles. 

We introduce certain formulas concerning the 
theory of Compton scattering. It is well known 
that the Compton effect is the incoherent scatter
ing of y- radiation by free electrons. Applying 
the laws of conservation of energy and momentum 
leads to the following expression for the wave
length of a photon scattered through an angle e: 

).' = ), + 1 -cos (j, (2) 

where A' and A are, respectively, the wavelengths 
of the scattered and initial photon, expressed in 
units of the Compton wavelength (A.= m0 c2 /h v). 

The Klein-Nishina-Tamm formula, giving the 
probability that a photon of wavelength A , in pass
ing through a one centimeter layer of material, 
collides with an electron and is deflected through 
an angle e while its wavelength becomes A.', is 
conveniently written in the form 

dWK (1,,).',6)=1l1tr~(~,Y[~,+ ~, --sin 26] (3) 

x 2~ a (1 -coso- 1.' + ),) dl/dO., 

where n is the number of electrons per cc, r 0 is the 
classical electron radius, d 0 is the element of 
solid angle, and o (ex.) is the delta function. 

In this form, dW K(A., A.', e) automatically becomes 
zero if condition (~J is not satisfied. 

We should emphasize that for gamma rays with an 
energy of the order of several mev, scattering 
through large angles, which is accompanied by 
large energy loss, is improbable compared to scat
tering through small angles. We may therefore 
neglect the sin 2 0 term in (3). 

For our later work we.also replace the factor 
~(A. I A.' )2 [ (A./ A.') + (A.' I A.)] in (3) by (A./ A.') k. 

If we determine the exponent k by the method of 
least squares, k turns out to be 1 .69. Since our 

main concern is with values of A.' close to A, we have 
chosen k = 1.8. In reference 2, k was taken equal to 
unity. In a note by the same author 3 , the possibil
ity of choosing k different from unity is pointed 
out. From. Fig. 2 it is clear that our choice gives 
a good fit to the true cross section. The ex
pression for dW :K; becomes: 

d WK_(I., )/' 6) (3 ') 

=a (I./ 1.')1' (l/27t) o ( 1 -cos 6- 1.' + l.)dQ.d)/, 

where k = 1 .8 and a = 277 nr~. 

1.0 

a8 

0,6 

0.4 -

a2 

FIG. 2. Approximate replacements for the Klein
N~shina-Tamm formula. 1- replacement of the factor 

~(A.'/ A.) 2 [(A.'/ A.)+ (A/ A.')] by (A.'/ A.); 2- replacement 

of the same factor by (A'/ A.) 1 •8 , which is used in this 
paper; 3- exact value. 

The values of the constant a for various elements 
are given in the following table. 

Values of the constant a in cm-l 

c AI 

a 0.3435 0,3885 

The distribution of once-scattered radiation was 
found in reference 5. 

5 L. Cave, J. Corner and R. Liston, Proc. Roy. Soc. 
(London) A204, 223 (1950) 

fe Cu Pb 

1.095 1.215 1.3425 

It is obvious that for a monochromatic unidirec
tional source, the distribution of unscattered 
radiation can be given in the form 
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r 0 (x, )., &) 
(4) 

= (1 / 2T:) o (1 -·cos 6) o (). -/.0) e-"(A,)x, 

where A0 is the wavelength of the primary radiation. 
One then finds 5 , for the distribution in angle 

and energy of the once-scattered radiation (in our 
notation), the following expression: 

r 1 (x, /,, 6) dQd/, (5) 

1 _ ex { _ '!"(A) ·- T (i-0) cos 6 l 
X P cos e .xi 

'!"(A) - ":' (A_0) LOS 6 

Calculation by the method of reference 5 of 
higher orders of scattering becomes, even for the 
second, extremely involved, and is practically 
impossible. We therefore turn to the general equa
tion of radiative transfer. 

2. THE EQUATION OF RADIATIVE TRANSFER 

We denote by r (x, A, 0) the photon distribution 
function in wavelenght A, angle 0 with respect to 
the normal to the surface of the material , and 
depth x in em. Then if the primary radiation has 
wavelength A0 and is incident perpendicular to the 
!Surface of the material, the change in r (x, A, 0) 
is given by the eguation 1 

6 aq.x, "A, e) • (~ ) r cos o.x = - 't ,, (x, ),, 6) (6) 

A 

+ ~ ~ r (x, 1.', 6') d WK ().', 1., 61) 

Ao 4rt 

+£no (1 -cos 6) o ().- 1.0) o (x), 
where 

cos U1 =cos 6 cos 6' +sin 6 sin 6' cos (cp- cp'). 

Equation (6) can he described in words as 
follows: 

The change in the distribution function r (x,A, 0) 
(the left side of the equation) is caused by 
absorption (first term on the right), scattering 
(second term), and by newly arriving photons from 
the source (last term on the right). 

We note that we could have omitted the source 
term in the equation, and taken account of it by a 
boundary condition at x = 0. 'Clearly, in our case 
the distribution function does not depend on 
azimuth. 

We expand r(x,A,O) in a series of Legendre 
•polynomials 

r (x, ),, 0) = 21TC ~ 21 t 1 rl (x, ).) Pt (cos 0). (7) 
l=O 

Using Eqs. (6) and (3 '), we obtain the following 
infinite system of equations for r z(x,A ): 

1 + 1 a r1+1 (.x, A) 
21 + 1 o.x (8) 

1 a r 1_ 1 (.x, A) 
+ 2/ + 1 o.x + 't (J.) ft (X, ),) 

A 

\ ( ).'\1 8 =a.) "'i:) ' Pt (I - ), + ).') ft (x, A.') dl.' 

"· 
+ o(x)o(J.-J.0). 

In deriving this system of equations, we have 
expanded the delta function which appears in the 
transfer equation (6) in a series of Legendre poly
nomials and have used the addition theorem for 
Legendre polynomials. 

The solution of this system of equations in the 
general 'case is very difficult. But, as already 
mentioned, the scattering through small angles is 
much more probable than scattering through large 
angles, especially for y - rays of· high energy 
(3-4 mev and greater). We may therefore assume 
that the angle 0 is small. Since, for small angles, 
the terms in (7) with large l are most important, the 
expansion (7) in Legendre polynomials agrees 
approximately with the expansion in Bessel func
tions of zero order (Hankel transformation). We 
mention that this fact was first used in studying 
the scattering of electrons, by Kompaneets6: 

00 

T (x, A., 6) = (1/21t) ~ 10 (10) f 1 (x, 1.) ldl. (9) 
0 

where we have used the relation 

lim Pt (cos ~) = 10 (fJ). {10) 
l-oo 

For large l the system of equations (8) reduces 
approximately to the equation 

6 A.S. Kompaneets, J. Exper. Theoret Phys. USSR 
15, 235 (1945) . . 
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ar1 (x, A) 
ox + 't ()..) r1 (x, 1.) (11) 

" =a~ lo (l y2()_- )..'))(A; y-s f1 (X, )/) dl! 

"· 
+ a (x) a()..- )..0). 

Equation (11) is the definitive equation which we 
wanted to get for the distribution function of scat
tered y- radiation in angle and energy. 

3. SOLUTION OF THE EQUATION OF RADIATIVE 
TRANSFER 

We expand the absorption coefficient -r( A ) in 
powers of (A - A0): 

't ()..) = 'to + 't1 ().. - A0) + 't2 (). - ).0) 2 + ... , (12) 

multiply Eq. (11) by (A/A0) 1 •8exp[-(A-A0) s] 
and integrate with respect to A from A0 to oo. We 
then get 

iJF1 (x, s) oF1 (]2p1 
ox +'toFt- 'tl 7fS + 't2 os2 -. . . (13) 

= (:)exp [-l 2j2s] F1 (x, s) +a (x), 

where F z(x,s) is related tor z{x,A) by a Laplace 
transformation: 

Ft (x, s) 
(14) 

ci> 

= ~ ()../)..0) 1' 8 ft (x, ).) exp (- ().- A0) s) d)... 

"· 
Clearly, the unknown distribution function r<x,A,O) 
is expressed as: 

1 (Ao )1,8 r (x, A., &) = 'bti ""'i: 

a+ieo oo 

(15) 

~ exp [(1.- ).0)s] ds 2~ ~ Ft (x, s) ] 0 (l6) l dl. 
ll-ioo o 

To solve Eq. (13), we look for r z(x,s) in the form 

00 

Fz (x, s) = e--r,x ~ mn (s, l) xn. (16) 
n=o 

We obtain the recursion relation 

a ( [2) (n + 1) mn+ds, l) = s exp - 28 mn (s, l) (17) 

for m (s,l). 
n 

Clearly, m0(s,l) = 1. The expressions for 
mn(s,l) are sums of terms of the type 

so that we can easily construct Laplace and 
Hankel transforms. 

(18) 

If we are interested only in the energy spectrum 
co 

ro (x, /.) = 27t ~ r (x, )., 6) 6d6, (19) 

0 

then the quantities m~O) (A) in the expansion 
co 

f 0 (x, /.) = (~~ y-s e--r,.'( ~ m~o) (1.) xn (20) 
n=O 

will be connected by the recursion relations: 

(21) 

:.\ 

=a~ m~0l ()..') dl.'- ['t (/.)- 't0] m~o) (A), 

!-· 

where m~O) (A) = o (A- A0). One can similarly 
obtain expansions for the angular moments. 

We note that, by the method described above, we 
can find the angular distribution and energy 
spectrum not only by expanding the absorption 
coefficient -r( A) in powers of (A- A0), but also if 
we replace it in any manner whatsoever, e.g. by a sum 
of exponentials 

't (1.) =a exp (b).) + c exp (dl.). 

The expansions obtained for the distribution of 
scattered y - radiation in energy and angle (16), and 
for the energy spectrum (20), converge rapidly, 
especially when the scattered radiation is softer 

than the unscattered (i.e., when the absorption 
coefficient does not decrease with decreasing 
energy). If the absorption coefficient increases 
with decreasing energy, we should replace 
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exp ( - r 0x) in the expansions (16) and (20) by 
exp (-r x), where r is the absorption coeffi-

m m 
cient for the hardest component of radiation. This 
is easily done~ It inc~eases the rapidity of con
vergence for relatively large depths of penetration. 

Clearly, in practical cases, in order that the 
calculation should not become too complicated, it 
is convenient to approximate the absorption coef
ficient hy a simple formula of the type r ( A) 

n . 
= ~ .,. .(A- A0)', with small n. 

i=O ' 

Let us consider some simple cases. 

4. THE CASE OF CONSTANT ABSORPTION 
COEFFICIENT 

The calculations are most easily done when the 
absorption coefficient can he regarded as inde
pendent of energy, which is the case, as already 
mentioned above, in light elements at high energies: 
in carbon, for hv;::: 8 m0c2 ; in aluminum, for 
hv,;::: l 0 m0c2 , etc. 

In this case we can find all the terms in the 
expansion (16) and, taking Laplace and Hankel 
transforms, get the following expression for the 
distribution function of the scattered radiation in 
angle and energy: 

r ( - f) 1 (''")l,s -T.~ {~ ( 62) x, J,, :J = 27t ): e . r; (),- ),o) o 2 (22) 

<X> 

1 ~ n-1(p)2n + ('A- 'Ao12 ...::..J (n!)2 2 
n=2 

X (I - 2n ('A':_ 'Ao) r-2 u ( ), - Ao - ~)} ' 

where 

p = 2Vax(J,........!.I,0), 

and u (x) is the unit step function 

{1, x>O. 
u(x) = 0, x<O. 

(23) 

(24) 

The solution has the form of a power series in 
the depth of penetration of the y - radiation in the 
m~ter, multiplied hy the exponential exp (- r 0x) 

which describes the absorption of the unscattered 
radiation. Each term of the series has a simple 
physical meaning. The first term describes the 
radiation which has not undergone scattering. The 
second term represents the once-scattered radia
tion. It is clear from the relation between angle 
and wavelength that the succeeding terms represent 
the fractions of y- radiation which have been 
Compton-scattered 2,3, ... times. 

As was to he expected, the maximum angle of 
deviation for twice-scattered radiation is 

e<2 l = y 4 (A - A0), for thrice-scattered radiation 
max 

e<3 l = y 6 (A - A0) ,for radiation scattered n 
max 

times - e<nl =-I 2n ( A - Ao). 
max V 

The intensity of the unscattered radiation is 

given hy the product of two delta functions, that of 
the once-scattered radiation by a single delta 
function; the intensity of the twice-scattered 
radiation has a discontinuity at e = e< 2 ) ' the 

max 
intensity of the thrice-scattered radiation is continu-
ous but has a discontinuous first derivative, the 
intensity of the radiation which has been scattered 
n times has a discontinuity in its (n - 2) nd 
derivative. The curve describing the intensity of 
the radiation which has been scattered n times 
naturally become smoother with increasing n. The 
angular distribution of y-radiation which is scattered two 
or more times has a characteristic step function form. 

These considerations about the continuity of the 
intensity of multiply scattered radiation are valid 
for any absorption coefficient. 

(). -Ao)tP(.ro,).,{}j 
0.1 

0,2 

0.1 

0 2 J 5 6 7 

FIG. 3. Evolution of the angular distribution of scat
tered y - radiation in the case of constant absorption 
coefficient. Normalized angular distributions are shown 
for radiation scattered more than once, at depths p = 1 .4 
and 6; A0= 1/34, A= 1/30. The discontinuities at 

e = 7.1 ° and the kink at e = 8.8 ° are caused, respec
tively, by the twice-and thrice-scattered radiation. With 
increasing depth of penetration, the distribution 
becomes smoother. Curve 1 - p = 1; 2 - p = 4; 3 - p = 6. 
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With increasing depth of penetration, the higher 
orders of scattering be gin to be more and more 
important, the angular distribution becomes 
smoother and, as will be shown later, approaches 
a Gaussian exp [ - e2 I 2 (A - A0) ] • 

The evolution of the angular distribution is 
shown in Fig 3. 

To get the energy spectrum we must integrate 
Eq. (22) over all angles: 

fo (x, /..)=a(),- ),o) e--r,x 
(25) 

('~-o)l,S e--r:,x (~ _!_(_p_)4 
+ "");" ('A - t-0 ) 4 + 2 2 

1 ( p )2n ) + · · · + n! (n -1)! 2 + · · · 
--r,x { ()..0 )1,8 P J ( )} 

= e a (), - ),o) + T 2 (A - 'Ao) 1 p ' 

where / 1 ( p) is the Bessel function of first order 
and imaginary argument. 

The physical meaning of the expansion (25) for 
the energy spectrum ie; the following: the n-th term 
refers to the n-times scattered radiation. This 
enables us to evaluate the contributions to the 
energy spectrum of multiply scattered radiations at 
different depths. 

Thus, for p = l /2, the intensity of once-scat
tered radiation makes up 96.95% of the total 
intensity of scattered radiation. 

For p = 1, the once-scattered radiation contrib
utes 88.5%, twice-scattered radiation gives 11.1 %. 

For p = 2, the intensity of once-scattered 
radiation drops to 62.9%, the intensities of twice
and thrice-scattered radiations are 31.4% and 
5.2%. 

For p = 4, the intensities of radiations scattered 
one, two, three and four times make up, respec
tively, 20.5, 41, 27.3 and 9.1% of the total 
intensity of scattered radiation. 

For p = 1, it is already necessary to take into 
account the twice-scattered radiation. For initial 

energy hv 0= 12m0c 2 and final energy hv = 1 Om 0 c2 , 

in carbon p = 1 corresponds to 44 em, p = 2 
to"" 1.76 m. 

As indications of the rapidity of convergence of 
the expansion (22), we may mention the following 
data: for p = 2 (an extremely great depth!), the 
third term is 4.5 times as small as the second, the 
fourth is 10.7 times as small as the third, etc. 

In reference 2, an expression identical with Eq. 
(22) was obtained by another, more complicated, 
method. The physical ~maning of the energy 

spectrum was not made clear in that reference. 

5. VARIABLE ABSORPTION COEFFICIENT 

Let us consider the case where the absorption 
coefficient is a quadratic function of the wave
length: 

We can approximate the absorption coefficient by 
an expression of the type of Eq. (26) both for 
light and heavy elements in various energy regions, 
including the neighborhood of the minimum 
absorption coefficient (cf. Fig. 1 ). 

For the distribution of y- radiation in energy and 
angle, we get 

r (x, ),, fl) 

(27) 

X (),- /..0) u (I - T )] (/..- ),0) x3+ · · ·}, 

where ex.~ e2 /2 (A - AO)' r 0(x,A, e) is the angular 
distribution (4) for unscattered radiation, 
r 1 (x, A, e) is the angular distribution (5) for once
scattered radiation. The energy spectrum is given 
by 

fo (x, A)= fo 0 (x,A) + r/ (x, ),) + (~ J"8
e-ToX 

(28) 
{a2 9 1 [a3 3 

X 2 (), - Ao) X" + 6 2 - 2 a2'tl 

where rg(x,A) and r~ (x,A) are the energy spectra 
of unscattered and once-scattered radiation, 
respectively, and are easily gotten from Eqs. (4) 
and (5). 

Actually two more terms were calculated in the 
expansions (27) and (28), but these have not been 
given because of their complexity. 

The distribution in energy and angle for the case 
of constant absorption coefficient (22) is obtained 
from (27) for .,. = .,. = 0. 

1 2 
In light elements, over a wide energy interval, 

the absorption coefficient may be assumed to be 
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linearly dependent on wavelength: T ( ,\) = T 0 + T 1 

x (,\- .\.0). Correspondingly, one should set T 2= 0 

in Eqs. (27) and (28). 
In this case the expression for the energy 

spectrum is obtained in closed form: 

ro (x, ),) = e--r,x{a (1,- ),o) +ax(~ ts 
(29) 

X 1F1 (I-~; 2;- -c1 (1,- /,0) x)}· 

where 1 F 1 (o.; f3; x) is the confluent hypergeo

metric function. The energy spectrum for the case 
of a linear absorption coefficient was found in 
reference 7; our spectrum (29) coincides with the 
spectrum given there if we take into account the 
difference in the approximations used for the dif
ferential scattering cross section. 

We now turn to a discussion of the general ex
pression (27) for the distribution of scattered 
y - radiation in angle and energy, and the energy 
spectrum (28). 

First of all, it is easy to establish the physical 
meaning of these expansions: terms containing a 

to the nth power correspond to n-fold scattered 
radiation. 

We have already dealt with the continuity proper
ties of the intensity of the n-fold scattered radia
tion in Section 5: the intensity of the n-fold 
scattered radiation has a discontinuity in its 
(n - 2) nd derivative; with increasing order of 
scattering, the angular distribution becomes 
smoother. 

{A-A,)(/l(x.J..,9) 

For energies less than that at which the absorp
tion coefficient reaches its minimum value (left of 
the minimum in Fig. 1 ), the primary radiation is 
more penetrating than the scattered radiation. 

Photons deflected through large angLes will have 
less energy, and will therefore suffer stronger 
absorption than photons scattered through small 
angles. With increasing depth of penetration, the 
angular spread of the y - radiation will become 
narrower than in the case of constant absorption 
coefficient. The expansions for the angular dis
tribution and energy spectrum will converge 
rapidly even for relatively large depths of penetra
tion. 

If, on the other hand, the initial energy is above 
the energy for minimum absorption, the primary 
radiation will be softer than the scattered radia
tion. With increasing depth of penetration the 
angular distribution will become diffuse. 

The expansions (27) and (28) will converge well 
only for not too large depths of penetration. The 
rapidity of convergence can be somewhat 
increased by introducing exp( - T mx) in place of 

exp (- T 0x) and making corresponding changes in 
all the expansions, which is not hard to do. 
Figure 4 shows a sketch of the normalized 
angular distribution of the radiation, having 
energy 10.2 mev (,\ = 1 /20), which has been 
scattered two or more times in copper, at a depth 
of 30 em, if the initial energy was 12. 75mev 
( .\. 0 = 1 /25). Here r 0= 0.30 cm- 1 , r 1 = -4cm- 1 ; 

r 2= 200 cm-1 ; T m= 0.28 cm-1 . 

a5r---------
0,4 

0,3 

a2 
0,1 

0 2 J 4 5 6 1 s 9 10 11 12 u 14 15 e' 

. FIG. 4. NormAlized angular distribution of y -ra~ia
tlon of energy IO.z mev,scattered two or more times m 
copper. The depth of penetration is 30 em, the primary 
energy 12.75 mev. 

7 S. Z. Belen'kii, Shower Processes i.n Cosmic Rays, 
Gov't. Publ. House, Moscow-Leningrad, 1948 

To characterize the convergence in this case, 
we. give the following: the second term in the sum 
in (27) is 2.5 times smaller than the first, the 
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third term is 4.4 times smaller than the second, 
etc. At greater depths , the convergence is much 
poorer. 

From Figure 4 we see that at () == 11 .5°, (just 
before the twice scattered radiation drops out), the 
curve for the angular distribution actually rises a 
little, which can be explained by the methods 
given above. 

The investigation of the angular distribution and 
energy spectrum of scattered y - radiation at great 

depths of penetration in matter will be carried out 
in another paper. 

In conclusion, I must express my profound 
gratitude to Prof. S. Z. Belen'kii for valuable sug
gestions, and to Acad. I. E. Tamm and Prof. E. L. 
Feinberg fpr supervising the work. 

Translated by M. Hamermesh 
225 
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Angular Distribution of Gamma Rays at Great Depths of 
Penetration in Matter 

V. I. 0GIEVETSKII 

(Submitted to JETP editor June 25, 1954) 
J. Exper. Theoret. Phys. USSR 29, 464-472 (October, 1955) 

The angular and energy distribution of y- rays at great depths of penetration in matter is 
found for the cases of constant and linear dependence of the absorption coefficient on wave
length. The passage of y- rays through an inhomogeneous medium is examined. 

I THE qualitative nature of the angular distri-
• bution at great depths of penetration depends 

strongly on the behavior of the y- ray absorption 
coefficient. If the initial energy of they-ray is 
less than that at which the absorption coefficient 
is a minimum, then on the average, y- rays scat
tered through small angles will be more penetrat
ing than those scattered through large angles. 
With increase in the depth of penetration, the 
oo.gular distribution will become narrower, or at 
any rate no wider. The small angle approximation 
applicable to scattering at energies of the order 
of several mev·remains valid for great depths of 
penetration. 

In the other case, where the absorption coef
ficient increases with energy, photons scattered 
through large angles will be more penetrating 
than those scattered through small angles. As the 
depth of penetration increases, the angular distri
bution will be smeared out, and the small oo.gle 
~proximation for each Compton scattering becomes 
incorrect. 

In this respect, the results of reference I, where 
they- ray energy spectrum at great depths of 

1 U. Fano, Phys. Rev. 76, 739 (1949); U. Fano, H. 
Hurwitz, Jr. and L. V. Spencer, Phys. Rev. 77, 425 
0950) 

penetration is calculated using the small oo.gle 
~proximation, arouse some doubt. 

In the present article, usin~ the polynomial ex
pansion of &>encer and Fano , the energy and 
angular distribution of y-rays at great depths of 
penetration are found for the case of constant 
absorption coefficient ( y- rays of high energy in 
light elements, see reference 3), and for an ab
sorption coefficient which increases lineady 
with wavelength. In these cases the small angle 
approximation is applicable, as can be seen from 
the final result. 

In the case of constant absorption coefficient, 
the angular distribution tends to a gaussian one, 
although the approach to a gaussian distribution 
takes place significantly slower than indicated in 
reference 4. At the end of the article these results 
and those of reference 3 are generalized for an 
inhomogeneous medium. Below we shall use 
equations of radiation transport and the notation 
of the preceeding article 3. 
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