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I N connection with the objections 1 relative to 
the conclusions arrived at by me in references 

2 and 3, I must necessarily write some explana­
tion verifying the correctness of these conclusions. 

In a note and at a meeting we have pointed out 
that in sufficiently large gravitating systems the 
magnitude of fluctuations increases with increasing 
dimensions of the system. This statement was 
proved with the aid of the simplified model of the 
isothermal ideal gas, occupying a volume V for a 
constant external pressure P and temperature T 
(for example, an ideal gas in a container, closed 
by a piston on which a constant force is applied). 
An analogous model is used for calculating the 
value of the fluctuations in a real gas at the 
critical point, as is done, for example, by Leonto­
vich 4 • 

For the proof we used the relations 

(~ V) 2 =- kT iJV 
dP' 

P= NkT _ iJU 
v av• 

xlvf2 
U=-rx.­

v'J, ' 

(l) 

the first of these can be proved as a rigorous 
theorem of the Gibbs statistical mechanics and 
hence is used only for systems in thermodynamic 
e<pilibrium; the expression for the potential energy 
U has the same validity as the law of gravitation 
of Newton. 

From Eq. (l) the relative volume fluctuations 
of gravitating systems was derived as 

(:ivj2 = _i_ ( _ 4ot xm2_!!_)--J 
V2 N l 9 kTv'J, ' 

(2) 

where m is the mass of the gas molecules, N is the 
total number of molecules in the system, K is the 
gravitational constant and ex. is the numerical co-

1 M. I. Shakharonov, J. Exper. Theoret. Phys. USSR 
27' 646 (1954) 

2 Ia. P. Terletskii, J. Exper. Theoret. Phys. USSR 
22, 507 (1952) 

3 Ia. P. Terletskii, Proceedings of the Second Con­
ference on the Problems ofCosmogony, Acad. Sci. 
USSR, 1 953 , p. 507 

4 M. A. Leontovich, Statistical Physics, Govt. Tech­
nical Printing Office, 1 944, p. 1 2 4 

efficient of the order of unity*. Since the last 
formula is used only for systems in thermodynamic 
e<pilibrium, the condition of applicability is 

iJP I iJv· < o, (3) 

precisely as for the analysis of the fluctuations 
at the critical point [see Eq. (32.1) in reference 
4]. 
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According to Eq. (3 ), formula (2) can be applied 
to an ideal gravitating gas, enclosed in a shell 
under a sufficiently large positive external pres­
sure ( P > NkT IV), but is inapplicable to a con­
fined gaseous cloud, occupying a volume V and 
located in an infinite empty space, since in this 
case P = 0, from which, according to Eq. (l ), 
iJP I a V > 0 and, conse<pently, condition (3) is 
not satisfied. Formula (2) is also inapplicable to 
the ideal gravitating gas, filling all of infinite 
space, since such a system obeys Newton's law 
of gravitation and is not thermodynamically 
stable. 

Thus, if for the nature of the rough model of the 
real gravitating system of galactic (or metaga1ac­
tic) form, we assume a gravitating ideal gas, en­
closed in a shell, subjected to an external pres­
sure (Model I) then, starting from formula (2 ), the 
applicability of which in the given case cannot 
be disputed, we come to the conclusion of in­
creasing magnitude of fluctuations with increasing 
number of particles as the system approaches a 
gravitating unstable state. If as the model of a 
real gravitating system we use one gravitating 
according to the Newtonian law for an ideal gas 
filling all of infinite space (model IT), then, by 
virtue of the Newtonian law of gravitation, such a 
system can not be in thermodynamic e<pilibrium, 
and, hence, formula (2) is inapplicable. If, finally, 
as the model of a real gravitating system we choose 
a spatially bounded gaseous cloud in an infinite 
empty space-( Model III) then the system cannot 
be stable because of the condition P = 0 at the 
boundaries of the cloud. Clearly, such a model is 
unstable for an ideal non-gravitating gas, and can-

* We note that in reference 3 this formula is given 
with two misprints. The accurate expression was de­
rived in reference 2. 
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not he considered as a model of a real universe. 
It is entirely obvious that in our notes 2 •3 we 

implied Model I, and not models II or III, because 
only in the case of \1odel I is it valid to use 
formula (2)to fulfill the condition: dPidV <0 or 
consequently, P > [ ( N k T) I ( 4 V) ]. At first sight, 
\1odel II seems more accurate because the ex­
ternal shell of Model I is clearly an artificial 
structure. However, Model II results in a gravita­
tionally unstable universe, and, hence, the usual 
laws of thermodynamics and statistical mechanics 
of systems in equilibrium are inapplicable. With 
Model II the assertions of the correctness of the 
thermodynamic laws or the small value of the fluc­
tuations in macroscopic systems has as little 
basis as for its opposite. This model prohibits 
any theoretical analysis of thermodynamic or 
statistical questions regarding the universe he­
cause there does not exist a statistical mechanics 
or thermodynamics for absolutely nonequilihrium 
systems*. 

It is known that a gravitationally unstable 
model of the universe is always inadequate, and 
repeated attempts were made to set aside the in­
stability by generalizations from Newton's law of 
gravitation. It is not difficult to see that the in­
stability of Model II is caused by a very rapid de­
crease of the potential energy of any part of the 

* In his c;:ritical note, M. I. Shakharonov arbitrarily as­
sumed that we considered Model II or Model III, as 
this may otherwise be understood from the reference to 
the formula which Shakharonov refers to as the virial 
theorem. We notice that Eq. (2) does not apply in these 
cases (in the first case this is obvious, owing to the 
gravitational instability of an unbounded system obeying 
Newton's law; in the second case, it is a consequence 
of the condition P = 0 at the boundary of the cloud). 
Shakharonov denies the correctness of my conclusions 
for the macroscopic character of the fluctuations in suf­
ficiently large gravitating systems and the possibility of 
significant spontaneous departure from a state of thermo­
dynamic e<pilibrium in a system of galactic dimensions. 
Denying our conclusions, Shakharonov considers the 
widespread opinion " that the fluctuations may not 
lead to a breakdown of thermodynamic ecpilibrium on a 
macroscopic scale" to be correct. Shakharonov does 
not note, however, the internal inconsistency of his 
conclusion. Using Model II, Shakharonov acknowledges a 
gravitationally unstable universe. But in this case it 
is impossible to come to any conclusions about the mag­
nitude of the fluctuations, inasmuch as thermodynamics 
and statistical mechanics are inapplicable. The use of 
Model III is inconsistent as we demonstrated above 
because of the inevitable condition P = 0 and not by 
virtue of the virial theorem, as was maintained by 
Shakharonov. The virial theorem is in general inappli­
cable in the case of Model III, since the system of an 
ideal gas without an external potential barrier is un­
bounded. 

system as its dimensions increase. Actually, for 
the uniformly dense gas a= mNIV, the potential 
energy of a part of the gas, enclosed in a volume 
V, can he expressed as u =-aKa v513 • while its 
kinetic energy ( 3/2) NkT = ( 3 akT I 2m) V and con­
sequently, for sufficiently large parts of the sys­
tem the potential energy may exceed the kinetic 
energy by an arbitrary amount .. However, a sys­
tem is known to he unstable if the potential energy 
taken with a minus sign is greater than one-and-a­
half times the kinetic energy, and, because of 
Eqs. (3) and ( l), the system of a gravitating ideal 
gas can he stable only by fulfilling the condition 

NkT a2U 
172 + av2 >O, (4) 

and by virtue of Eq. (l ), 

3/2 (3/2 NkT) + U> 0. (5) 

Obviously, the stability of an unbounded system 
of an ideal gas may he guaranteed if we assume a 
violation of the Newtonian law of gravitation for 
very large systems and imagine, for example, above 
a critical value V the potential energy of an iso­
lated volume of a ~~mogeneous Eas increase~ not 
as v513 ' hut simply proportional to v. In thiS 
case, condition (4) is always fulfilled for suffi­
ciently large systems. Thus, it is possible to have 
another model (Model IV) of a large gravitating 
system, in which the gas fills up all of infinite 
space, as in Model II, hut in which the universe is 
gravitationally stable, as in \1odel I, as a result 
of the breakdown of Newton's law of gravitation 
for sufficiently large systems. 

It is easy to see that for Model IV the fluctua­
tions of the volume of any isolated part of the 
gas may he calculated from Eq. (2) if its volume 
does not exceed the critical volume V , because cr 
in this case the law of gravitation has the Newton-
ian form. For volumes larger than V , it is neces-

cr 
sary to use another expression for U, and conse-
quently, the expression for the fluctuations is dif­
ferent from Eq. (2). Thus, in the same domain 
where Newton's law of gravitation is fulfilled, the 
fluctuations can he calculated with the aid of 
Model I. 

It is not difficult to cite a concrete example of 
Model IV. It is well-known that the Poisson equa­
tion for the gravitational potential 'P does not have 
a finite solution for a uniformly distributed 
density for all space. In Einstein's theory of 
gravitation there occurs an analogous difficulty. 
It is known that this difficulty is removed in the 
classical Newtonian theory as well as in the more 
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precise theory of Einstein by means of the intro­
duction of an additional term (the so-called cosmo­
logical term [see, for example, reference 5) ]. It 
is easy to show that with the introduction of an 
additional term in the gravitational equations it 
is possible to eliminate the gravitational in­
stability of an infinite gravitational system. Since 
we are concerned with the principal aspects of the 
problem, we will consider only the simplest gener­
alization of Newton's theory, suggested by Neiman, 
according to which, in place of Poissons's equa­
tion, we postulate the eqtation of the form 

V2Cfl - A 2 cp = 41tcr, ( 6) 

where A 2 cp is the cosmological term. 
According to Eq. (6) the potential energy of 

matter distributed with a density a( r) in a volume 
V can he expressed as: 

U = -2 \ \ cr (r) cr (r') e-1. r-r' I drdr' 
2 ~ ~ I r-r'l ' 

(7) 
vv 

where dr and dr' are elements of volume. 
For small volumes, where V 113 «A "1 , the ex­

ponential factor inside the integral expression can 
he neglected and in this case, for a system of 
mass M, we obtain the result of the Newtonian 
theory, that is, U "'M 2 v- 113• For larger volumes, 
when V 113 » A -1 , then, according to Eq. (7) we 
obtain U "'M 2 v- 1 . For example, for the case of 
a volume filled with matter of uniform density a 
= M/V, we calculate 

U xM22l't' 
=-~ npH V'!a ~ ),-1, (8) 

Conseqtently, for a universe that is filled uni­
formly with matter, the potential energy taken with 
a minus sign for a sufficiently large portion, in­
creases proportionally with the volume, as well as 
does the kinetic energy. Thus, au ideal gas, 
gravitating according to Eq. (6), and filled unif­
formly to an infinite extent, can he considered as 
an example of Model IV. 

Model IV may he rather somewhat of an approxi­
mation to the real universe, if we consider not an 
ideal, hut a real gas, obeying Vander Waals equa­
tion and gravitating according to Eq. (6). For such 
a gas, for V113 «A -I, according to Eq. (8), we 
have 

(9) 

i.e., written differently, the gas obeys Vander­
Waals equation and has a constant a, equal to 

5 D. lvanenko and A. Sokolov, Classical Theory of 
Fields, GITTL, 1951, p. 70 

A=+~ a -),2 . (10) 

It is obvious that the question of stability of 
the model chosen is the same as for a real gas, 
obeying Vander Waal' s equation, and the expres­
sion for the relative volume fluctuations has the 
form 

(LlV)1 '1 [ 1 2a N]-I 
Vi"-= N- (1 _N~)z- ev . (ll) 

It is obvious that the latter formula stands on the 
same basis in this case as in the case of an 
ordinary real gas. 

From the point of view of Model IV the Roltz­
mann fluctuation hypothesis is more likely to he 
valid. Let the average density of the universe 
he such that on the average it is found in the 
gaseous phase and, according to Eq. (ll), for 
sufficiently large volumes macroscopic fluctuations 
are possible. If fluctuations of gigantic dimen­
sions are realized with increasing density in a 
definite portion of the universe, then in this region 
a condensed phase is developed, i.e., the forma­
tion of stars, planets, etc., results. In the course 
of time, however, this fluctuation is resolved, i.e., 
the density hegins to decrease because the mass 
leaves the center of the fluctuation. After the 
transition to a sufficiently rarefied state there 
remains a region of condensed material (for ex­
ample, a planet) which is gradually transformed 
into the gas phase owing to the statistical in­
stability of such gravitating systems. In this 
manner, this portion of the universe is finally 
returned to its initial condition. Parallel to the 
fluctuations changing the volume on a macro­
scopic scale are changes in entropy, and, con­
sequently, the law of monotonic increase in en­
tropy is violated in a large part of the universe. 
Clearly, what this picture describes is only a 
roughly simplified model of an endlessly compli­
cated phenomenon in a hounded portion of an in­
finite universe. However, it is not excluded that 
in this model there are shown features of cosmo­
logical processes in the course of large intervals 
of time in systems on a metagalactic scale. 

An analysis of the methodological significance 
of the Boltzmann fluctuation hypothesis is given 
in articles in references 6 and 7 and in a roono­
graph8 

6 Ia. P. Terletskii, Dokl. Akad. Nauk SSSR 72, 1041 
(1950) 

7 Ia. P. Terletskii, Problems of Philosophy, No.5, 
1951, p. 180 

8 Ia. P. Terletskii, Dynamic and Statistical Laws of 
Physics, IZD, Moscow State University, 1950 
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Another article 9 is devoted to a related problem. 
As for the paper of M. I. Shakharonov in the R~­
ports of the Moscow Univer~Sity 1 0 , which he cites 
in reference 1 as if it contains a philosophic 
analysis of Boltzmann's hypothesis and in which 
he draws a conclusion about the supposedly ideal­
istic character of Boltzmann's theory, it cannot be 
regarded as convincing, especially in view of an 

9 Ia. P. Terletskii, J. Exper. Theoret. Phys. USSR 
I 7, 83 7 (1947) 

10 M. I. Shakharonov, Reports, Moscow State Uni-
versity 6, 15 (1953) 

evaluation of Boltzmann, given by V. I. Lenin 1 1 , 

as a materialist who struggled systematically 
against Machism. It is strange that Shakharonov 
arrives at the conclusions of Boltzmann's ideal­
ism from numerous <potations of Engels, which 
merely give witness to the direct bond between the 
fluctuation hypothesis of Boltzmann and the expo­
sition of the <palitative indestructibility of motion 
as developed by Engels. 

11 V. I. Lenin, Collected Works, 4th printing, vol. 
14, pp. 274-276 

Translated by B. Hamermesh 
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