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The fluctuations of potential of the internal electric field in the electron-ion plasma of 
a metal are calculated, also,the electrical resistivity dependent on the scattering of elec­
trons by these fluctuations. 

1. INTRODUCTION 

AT present, mathematical methods have been 
developed for calculating the collective 

Coulomb interactions in a system of many particles 
(a plasma) 1-4. Up to now, however, these meth­
ods have not found wide use in the theory of 
metals. This is apparently no accident and is ex­
plained by the circumstance that in the approxima­
tion of a metal by an isotropic plasma, the peri­
odic distribution of the ions of the metal 
(crystalline lattice) and the presence of " non­
collectivized'' electrons in the atomic cores 
(ions) are not taken into consideration. 

The consideration of periodicity in a three­
dimensional distribution of ionsS is linked with 
mathematical difficulties. Non-collectivized 
electrons of the atomic cores generally were not 
allowed for in the foundations of plasma theory. 
Disregarding these difficulties, it makes sense to 
attempt to apply the theory of an isotropic plasma 
to the study of certain physical. properties of the 
alkali metals with the aim of clarifying the results 
which come out of the plasma model of a metal. In 
the alkali metals, the periodicity in distribution 
of ions and the non-collectivized electrons of the 
atomic cores apparently play a lesser role than in 
non-alkali metals, and in the former, the " va­
lence'' electrons can be considered completely 
collectivized. 

In the theory of a plasma, essentially the 
dynamics of the electrons were studied and only 
in a few works 1 • 6 was the motion of the ions also 
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taken into account. In the investigation of the 
physical properties of a metallic plasma which de­
pend on temperature (for example, the electrical 
and thermal conductivity, scattering of light, 
specific heat, surface tension and others), along 
with the dynamics of the electrons it is also neces­
sary to take into account the motion of the ions. 
Precisely in these cases the motion of the ions 
plays a basic role; it determines the temperature 
of the metal and thus also the character of the be­
havior of the " free" electrons. The thermal mo­
tion of the ions leads to fluctuations of physical 
quantities such as the density of the number of 
particles, the energy, the internal electric field 
and.others. Fluctuations of physical quantities 
play a significant role in applications. Thus, for 
example, the scattering of light is computed 
through fluctuations of the density of the number of 
particles. Through fluctuations of the density of 
electric charge the internal electric field is cal­
culated which determines the temperature depend­
ent electrical resistance of metals. 

The aims of the present paper were (l) the 
computation of the fluctuations associated with 
thermal motion, taking into account the collective 
Coulomb interactions between the electrons and 
the ions, and (2 ), the computation of the electri­
cal resistivity of a metal plasma which depends 
on the scattering of conduction electrons by fluc­
tuations of the internal electric field. 

II. THE FLUCTUATIONS OF PHYSICAL QUANTITIES 
IN THE ELECTRON-ION PLASMA 

In the study of fluctuations in a plasma, it is 
convenient to express all physical <pantities 
through the fluctuation of density of the number 
of particles. Fluctuations of large absolute value 
have slight probability and do not play a sub­
stantial role. The study of small fluctuations, how­
ever, is equivalent to the study of small oscilla­
tions of the plasma about a fundamental state 
char~cterized by an absence of fluctuations. 

We take the state of the plasma at the absolute 
zero of temperature as its fundamental state. 
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Moreover, the distribution of- electrons in energy 
or wave number conforms to aFermi function [ 01 , 

and of ions to a 8-like function [0 2 (for example, 
a Bose function), but the spatial distribution of 
each is of the same kind. At temptlratures of the 
metal plasma different from absolute zero, thermal 
motion begins, and leads to fluctuations. 

The character of the behavior of fluctuations of 
density in ensembles of " ideal" and " non-ideal" 
particles is essential! y different. In ensembles 
of " ideal" particles, fluctuations of density are 
resolved by diffusion in the course of time, whereas 
in ensembles of" non-ideal" particles the behavior 
of the fluctuations with time suggests the propaga­
tion of a disturbance in an elastic string. On 
consideration of the details of the fluctuations 
of density in " non-ideal" ensembles it is neces­
sary to take into account collective interactions. 
For the calculation of these interactions, one can 
employ a kinetic equation with a self-consistent 
field l or the methods of references 3 and 4, 
having generalized them to two kinds of particles 
(electrons and ions). 

The equations which allow for collective inter­
actions have the form 1 

iJft ei f 
Ft + (vVr)ft + mi (EVv) i = 0, (1) 

E =-VIP, 
2 

All>= -4'1t' ~ ei ~fidv 
\=1 

(i = 1, 2), 

where the fi are the distribution functions of the 
electrons and of the ions. The symbol i = 1 re­
fers to the electrons and i = 2 to the ions. In 
equations (l) only the Coulomb interactions are 
treated. 

For the study of fluctuations ( small variations) 
the non-linear system of equations (l) can be 
linearized, assumin~ in Eq. (l) 

ft = fot + Cf>; ( r • V • t) Cfi1 <!?;;:. fot (2) 

and retaining terms linear in 'Pi· A solution of 

the linearized equations can be sought in the form 
of a superposition of plane waves 

cpi = ~ gi ( q, v) eirut-iqr. (3) 
q 

Substituting Eq (3) in the linearized equations, 
we finrl 

Cf>1 = Lcxi1Fi (q, v) ~ (R;e-iqr + R;e1qr), (4) 
q 

where 

R1 (q, t) = e1"'1 ~ g1(q,v)d, v, R1 (q) = R;(- q), 

[ 0 1 and [0 2 are degenerate functions, Fermi and 

Rose, respectively: 

cx1 = ~ F1 {v, q) dv. 

The condition for existence of non-zero solutions 
gives the dispersion equation 

I - y<n> (q) cx1 - v<22> (q) cx2 = 0, (5) 

where v<ii)(q} = 417 e; I q 2 is the Fourier com­

ponent of the Coulomb potential. 
In reference 6 it was shown that the dispersion 

equation (5) gives two branches of oscillations: 
acoustical and electronic. Thermal motion ex­
cites only the acoustical branch of vibrations. 
For excitation of electronic oscillations an 
energy 1t cu 0 1 ( cu 0 1 is the Langmuir frequency of 

electronic oscillations) of the order of 10-11 erg 

is needed. This corresponds to temperatures of 
the order of 104 ° K,at which metals no longer 
exist. For the acoustical vibrations, cu 2 / q2 

«p~ /m 1 (p 0 is the limiting Fermi momentum), 
and the damping is negligibly small 6 • 

For these conditions, we get from Eq (5) 
w~2u~ 

c.u2 = q2 (6) cu2 + u2q2 ' 
02 0 

where 

p is the mean density of the number of ions. 
02 2 2 2 
In case q « cu / u = q 2 the dispersion 

02 0 D 

vanishes and Eq. (6) goes over to cu = u q; u 
0 0 

plays the role of the velocity of sound in the 
metal plasma, q0 ---the role of Debye wave 

number. 
By means of Poisson's equation andEqs. (4) and 

(5), we find 

11>=4'1t'e2~[c.u~:a q2V(22)(q)J-I ~ (R2e-lqr (7) 
q 

The distribution functions of electrons and 
ions (4) describe in the linear approximation the 
possible states of the system of electrons and 
ions, wherein one state differs from another only 
in the set of superposition coefficients Ri (q) (the 
Fourier component of density). Therefore, it is 
very convenient to accept the quantities Ri (q) as 
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dynamical variables which describe the state of 
the system. The advantages of such a choice of 
variables are evident if one goes over to the 
Hamiltonian method of description of small oscil­
lations. The density of the Hamiltonian function 
of the system of electrons and ions, considering 
only the Coulomb forces, has the form 

H = ~ ~ m1v2j 1 dv + ~ ~ m2v 2j 2 dv (8) 

1 I 

+ ilrJVci>)2 + ci> ~ ei VI dv. 
l=l 

The first two terms represent the density of the 
kinetic energy of the electrons and of the ions, 
the third,the energy of the electric field, and 
the fourth, the energy of interaction of the elec­
trons and ions with this field. 

Differentiating E<} (8) with respect to time and 

In the case of acoustical vibrations, it is pos­
sible to disregard the kinetic energy of the well-

· regulated/movement of the electrons. Thereupon, 
integrating Eq. (10) first over the volume of the 
system, with the hypothesis that the current Ti 

. through the boundary of the system reduces to 
zero, and then over time, we get for the complete 
Hamiltonian function .J.,j the expression 

~ m2w2 ( ro2 ) • • ~ = ~ 4P q2 1 + - 2 (R2R2 + R2R2) 
q 02 0002 

(ll) 

+con st. 

We introduce new variables with the aid of the 
equation 

R2(q)=iV2 P02q X (12) 
(1 + ro2 1 w~)'/, q • 

Considering that Xq"" R 2 (q) = p 2 (q) ei(J)t, and 

assuming im 2 (J)p 0 2 X q = i p.(J) X q = P <I we trans­

form J.,j to the form 

.:u ~ {pqp q uro2X X } 
.:n = £.J 2; + 2q -q + const, (13) 

q 

where \ 2 mv2 ~~ ) 
const = ~ ~1 T fo1 dvdr +J\~ 1 eJ0 Jvct> dr. 

substituting for a[!a t From Eq. t 1 ), we obtain from 

z 

aa~ =- ~~ div T1- 1/2 e1 E ~ v 2 CVvf1) dv 

2 

+ il~ :t (Vci>)2 + :, [ ci> ~1 e1 ~ /1dv J, 
where 

T1 = 1/2 ~ m1v2 (vfi) dv 

is the vector of current density of the kinetic 
energy. 

t9) 

Transforming the· second term in Eq. (9) by in­
tegration by partS', assuming minuteness of the 
deviation of the distribution functions fi from 

their equilibrium values £0 i and using the solutions 
(4), we get, in place' of Eq. (9), 

(lO) 

The Fourier components of the potential of the 
internal electric field are expressed in terms of 
X by the formula 

q cl>q = V~ :: [1 + :;2r1 ~ Xq. (14) 

The transition to the quantum description of small 
oscillations (fluctuations) is achieved by the 
replacement of P by the operator- itr a I ax . q q 

For the characteristic values of the energy of the 
vibrations, we get the formula 

d)=const+ ~(Nq+ 1!2)hw(q). (15) 
q 

In the case of thermodynamic eqlilibrium, N 
q 

is a Bose-Planck function, and the mean-square 
values can be found by means of the probability 
distribution of the coordinate of an oscillator7 
Thus, using the kinetic e<pations (1) and quantiza­
tion of small oscillations (fluctuations), we have 
found formulas for the fluctuations of the density 
of the number of particles, the Fourier component 

7 L. D. Landau and E. M. Lifshitz, Statistical 
Physics, Clarendon, 1938 
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of the potentiai of the internal electric field and 
the energy density. 

In the following we shall take up a case which 
is not without interest. If we carry out calcula­
tions, analogous to those done above, for a system 
consisting of one sort of particle with mass m 2 . 

and charge e 2 , but with the interaction potential 

V(r) = (f)exp(-q0 r), (16) 

which satisfies the equation 

(1 7) 

where qD = cu 02 1 u0, then we get formulas in 

exact agreement with Eq. (6) and Eq s. (12)-(14). 
From this observation it follows that in the 

calculation of fluctuations of physical <pantities 
in an electron-ion plasma (accounting for collective 
Coulomb interactions) the role of the electrons 
boils down to a Debye screening of the electric . 
charge of the ion-points. For this reason and, of 
course, since the mean speed of the chaotic mo­
tions of the ions is significantly less than the 
mean speed of the electrons, the Debye cloud of 
polarization is nearly indistinguishable from 
a sphere. 

III. ON THE ELECTIDCAL CONDUCTIVITY OF 
METALS 

The motion of conduction electrons through an 
ideal periodic metal lattice takes place entirely 
without hindrance, i.e., the electrical resistivity 
is zero. In order to explain the incidence of the 
finite electrical resistivity of a metal, it is neces­
sary to consider the thermal motion of the atomic 
residues (lattice vibrations). Owing to this mo­
tion, the periodicity of the potential of the lattice 
is disturbed and electrons are no longer able to 
travel unimpeded through the metal. This circum­
stance,in the final analysis, also leads to the 
emergence of electrical resistivity. 

In other words, the thermal motion of the ions 
sets up fluctuations in the potential of the in-
ternal electric field in the metal, and the scatter­
ing of electrons by these fluctuations is the cause 
of the finite value of the electrical resitivity. Thu!\ 
for computing the electrical resistivity of a metal, 
it is necessary to know the fluctuations of po­
tential in the internal electric field. The phenome­
nological introduction of these fluctuations (of 
the perturbing potential) in Bloch's theory8 was 
combined with additional hypotheses. Thus, for 

8 F. Bloch, Z. Phys. 59, 208 (1930) 

instance, in references 8-10 the hypothesis of 
" deformed" ions was proposed, but in reference 
11 a hypothesis of " rigid" ions. For such an 
introduction of fluctuations of potential, the 
" constant" of the interaction between electrons 
and thermal vibrations of the lattice remains un­
known and this makes a comparison of theory 
with experiment difficult. 

The thermal motion of ions of a metal in the 
solid phase bears the character of oscillations 
about equilibrium positions which are considered 
stationary (held fast). If we disregard thermal 
expansion, then a change in temperature causes 
only a change in the amplitude of vibrations of the 
ions. Such a ( oscillatory) motion of the ions of 
a metal can be described by an equivalent system 
of non-interacting oscillators. For this, quantities 
proportional to the Fourier components of the 
density of the number of ions serves as dynamical 
variables (the coordinates of the oscillators or 
the independent variables). These variables we 
shall call collective variables. They describe the 
collective oscillations of the density of ions. Ex­
periment shows that in a solid metal the ions pos­
sess also, so to speak, individual degrees of 
freedom, which lead to the chaotic progressive 
transfer of ions or to self-diffusion ' (intermixing). 
This will be gone into in more detail in another 
place, in connection with the discussion of the 
<pestion of the electrical resistivity of liquid 
metals. 

For the calculation of the electrical resistivity 
of metals in the _solid phase, one can apparently 
disregard the individual degrees of freedom of 
ions (inasmuch as the number of such ions is 
comparatively small) and compute the scattering 
o£ the conduction electrons by the fluctuations of 
.potential of the internal electric field, determined 
only by the collective oscillations. The calcula­
tions are especially simple in the case of high 
temperatures T > eD. where eD is the Debye char-

acteristic temperature. In this case, as is known, 
it is possible to introduce the free-path length of 
a conduction electron l . This length is expressed 

" by the square of a matrix element of the interaction 
energy of an electron with the internal electric 
field: B ( k, k '). According to reference 12, this 

9 H. A.· Bethe and A. Sommerfeld, Electron Theory of 
Metals, -1938 

10 L. Brillouin, Les Statistiipes Quantiipes, Paris, 
1930 

11 L. Nordheim, Ann. Physik 9, 607 (193 1) 
1 2 F. Seitz, Modem Theory of Solids, McGra:w-Hill, 

New York, 1940, p. 526 
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relation has the form 
'a. 

_1 = l61ta(dk) 
l" dE o 

n 

X Vk~~B(k, k')(l-cos&)sin&d&, 
0 

(18) 

where V is the volume of the metal (we assume in 
thefollowingV=1 cm 3 ),1ik2;2m -E isthe 

0 1 - 0 

limiting energy of the Fermi distribution, the 
<pantity B ( k. k') depends on k and on the angle 
t'J between k and k ', 

lkl=lk'l; (19) 

in accordance with Eq. (14) and with the definition 
of the matrix element. 

B I k, k' I= I (~k I e1«lll ~k' )12• (20) 

(21) 

For T > El the mean square value of the coordi­
nate of an oscillator with mass p. and fre<pency w 
is 

(22) 

( K is Boltzmann's constant). 
Substituting the expressions (20) and (22) in 

Eq. (18) and carrying out the integration over t'J , 
taking Eq. (19) into account, we find 

(23) 

where 
qD 

I (qD) = ~ q3 [1 + 2u~q2 I w~2rl dq ~ lfs qt. 
0 

Substituting lx in tl:te well-known formula for the 

electrical conductivity a 
e2n 

a _ -1 _ I'"ol - l 
- p - m1v (k0 ) x 

[m 1 is the mass of an electron, e 1 its charge, 
p0 1 is the mean density of electrons, v ( k 0 ) is 
the limiting velocity of the Fermi distribution], we 
get after the simplifications 

_ 1 10nns p (2 4) 
a = P = (m1e1z) 2 xT ' 

where p is the pressure of the degenerate electron 
gas, equal to 

For the alkali metals one can assume the 
number of collectivized electrons P.er atom z = 1. 
For T = 2 73 ° K > ElD formula (2 4) gives the 

following values (in units of 10 16 cps): 

aNa= 26, aK = 10, aRb= 6, acs = 4. 

These values do no differ appreciably from those 
measured experimentally in the same units: 

aNa= 21, O"K = 13, aRb=- I, acs = 5. 

It is not difficult to compute El = -h w 1 K as 
max 

well. The maximum frequency of the acoustical 
vibrations (LJm ax which enters in here is determined 

by Eq. (6) if the q in it is set e<pal to q , the 
maximum wave number. Final~y, we gef 

8 = 1i.ooo2 /V2x. 

The values of El calculated by this formula: 

8Na = 230°, 8K = 130°, 

(9Rb = 78", 8cs = 58°, 

are close to the Debye characteristic temperatures, 
found from measurements of specific heats: 

(8o)K = 100° -126°K, 

(8o)Rb = 62o-85°K, 

(8oks = 55°- 68°K. 

Other authors 6 • 1 3 have compared the experi­
mentally measured velocity of propagation of 
sound in the alkali metals with that calculated 
from the plasma model. The discrepancy between 
theory and experiment in this case did not exceed 
15%. 

The <pantitative comparison of theory with ex­
periment shows us to what extent the properties 
of alkali metals can be approximated by the prop­
erties of ah electron-ion plasma. 

1 3 D. Bohm and T. Staver, Phys. Rev. 84, 836 
(1951) 

Translated by R. L, Eisner 
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