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Formulas are obtained which enable one simply to determine a real spinor in terms of the 
primary tensor characterizing it. With the aid of these formulas we establish the relation he
tween two spinors, corresponding to two given triples E, H, j. Tensors whose components 
are expressed in terms of two real spinors are investigated. Two types of spinor transforma·· 
tions are introduced, corresponding to different possible interpretations of the gauge trans
formation. The significance of the spinor transformations is established; it is shown that if 
we regard the group of tensors as initially defined, then we can with their aid find 'two real 
spinors to within a spinor transformation of one of the types studied. The components of the 
initial tensors. can be exp-essed in terms of the spinors, in which case they will not change 
when the corresponding spinor transformation is carried out. 

I N references l and 2 we studied some of the 
properties of real spinors --- systems of para

meters defined by a four-dimensional antisymmetric 
tensor for which both invariants are equal to zero. 
In references l, 3 and 4, the question of the use of 
real spinors in certain physical problems was con
sidered. For further development of the ideas 
introduced in these papers it is necessary to in
vestigate the more general case of tensors char
acterized by a pair of real spinors. The solution 
of this problem is the purpose of the present work. 
The notation used in the paper corresponds to that 
of the articles mentioned; we shall also make 
continual use of the properties of matrix-tensors 
considered in reference 4. 

I. FUNDAMENTAL FORMULAS 

A single real spinor tjJ determines the matrix
tensors 

F = ~ RaR 13r 13 = R!!_ + R4~• (l) 

P=Ra}"' = j + rR4; 

where ( cf references 2, 3 arrl 5): 
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j = - (I / p) RE H; 

E; =- fJR;•'f, H; = "f'R;y, 

/ = "f'R4.Ri"f, p = •V"f. 

(2) 

{3) 

Since E and H are primary quantities, while tjJ is a 
derived quantity, it is necessary to find a suf
ficiently simple method enabling one to find the 
components of the associated real spinor tjJ if the 
E and Hare given. 

Suppose that for some matrix, such that d 
= diR', d2 = p 2 , the relation 

d"f=p"f. 
is satisfied. 

Multiplying Eq. (4) on the left by tjJ', - tjJ'], 
tjJ' R 4 , and using Eq. (3), we get 

(4) 

(_!! ~) = p2' ~ ~) = (j ~ = 0, (5) 

so that, since E, H and j are mutually orthogonal 
and have equal length, we have d =H. We thus 
find: 

H'f = P'f. (6) 

It is not difficult to see that if the components 
Hi are related to tjJ by formulas of the type of Eq. 
(3), then formula (6) will be valid. 

In precisely the same way we get 

- JE'f = p"f. (7) 

Using the fact that EH = pRj and multiplying both 
sides of (6) from the leh by - ] E, we have as a 
consequence 
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(8) 

If E and Hare given, the corresponding real spinor 
t/J can be found from Eqs. (6) and (7). {It is 
understood that the three-dimensional "vectors" 
E and H must have equal length and be orthogonal. 
Otherwise, these equations will be incompatible.) 

Formulas (6), {7) and {8), which we shall call 
the fundamental formulas for a single real spinor, 
will be very important for what follows. 

We observe that it follows from Eq. (8) that 

P"'( = 0, (9) 

and from Eqs. {6) and (7) that F t/J = 0, where the 
last relation is obtained from Eq. (9) if we multi
ply both sides from the left by the matrix 
- ( 1/ p) E. Also, if the relation D t/J = 0 holds for 
any matrix four-vector D, then the matrix D is 
proportional to P. 

On the basis of formulas (6)- (8), we consider 
the question of the relation of two real spinors 
defined by two different antisymmetric tensors of 
the second rank having invariants equal to zero. 
In doing this we shall assume that the position.of 
one triple, E, H, j, relative to the other triple 
characterizing the second tensor, is known; i.e., 
we assume, for example, that we know the Euler 
angles ·characterizing the rotation of the one triple 
relative to the other, andalsothe ratio p( 2 / P(l) 

of the lengths of the vectors. When we deal with 
several real spinors,we shall distinguish them by an 
additional index in parentheses, e.g., tP(l)' tP( 2 )' 

etc. We shall also give the index in parentheses 
for the corresponding vectors E, H, j. In our case 
we can use the designations 1 and 2. 

The real spinor tfr( 2 ) can be obtained from t/J(l) 
by rotation or reflection of tiE four-dimensional 
space and subsequent multiplication by some real 
number. We shall make use of the fact that the 
matrix of an arbitrary rotation or reflection can be 
written in the form of a product of matrices which 
are linear combinations of the R"' ( cf reference 2 ). 
Since each of the three spatial basis vectors can 
be represented as .a linear combination of the three 
linearly independent spatial vectors E, H, j, 
(strictly speaking, E and H do not behave like the 
spatial parts of vectors under a general Lorentz 
transformation, but this does not matter for the 
present case), the matrices Ri can be expressed as 
linear combinations of the matrices E, H, j, cor
responding to an arbitrary real ~inor o/. Using 
formulas {6)- {8) we find that under a four-dimen
sional symmetry transformation, and consequently, 

also under an arbitrary rotation and reflection, a 
real spinor t/J will be multiplied by matrices of the 
type 

!( = k4 + k1R4 + k2R + kal. (10) 

In this way we can establish that t/J( 2 ) is related 
to t/J (l) by the formula 

'f <2> = K•f <1>, (ll) 

where the matrix K can be written in the form of 
Eq. {10). 

Let us study in more detail the question of the 
form of the parameters k"'. First of all, we note 
that matrices of the type of Eq. (lO) are isomorphic 
to quaternions; ·to the matrices R 4 , R, !, there cor

respond the quaternion units i, j, k. In particular, 

K' K = ki + k; + k~ + k: = "t2 (12) 

can be regarded as the norm of the quaternion, so 
that it follows from Eq. {ll) that 

(13) 

Using formulas (3), (10) and (ll), we express 
E:( 2 ), H( 2) and j (2 ) in terms of E (l )' H,0 ), j (I)' 

and the parameters k"'. After simple calculations 
we obtain 

E<2> = (k! + k~- k:- k:) E(ll (14) 

+ (- 2k4k3 + 2k1k2) H<1> 

+ (2k4k2 + 2klka) J!I), 

H<2> = (2k4ka + 2k1k2) E<1> 

+ (k: - ki + k~ - k~) H(l) 

+ (- 2k4k1 + 2k2ka) )(1), 

1<2) = (- 2k4k2 + 2k1k3) E(l) 

+ (2k 4k1 + 2k2ka) H(l) 

+ (k! -.ki- k~ + k~)j(l)• 

(15) 

(16) 

From Eqs. {14)-(16) it is evident that the k"' 
coincide with the well-known Rodrigues parameters, 
relating one triple of mutually (J"thogonal vectors 
of equal length with a second triple ( cf, for ex
ample, reference 6, pp. 183-184, where k 4 , k 1' k 2 

6 W. D. MacMillan, Dynamics of Rigid Bodies, McGraw
Hill, 1936 
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and k3 are denoted by the symbols p, A, p. and v)*. 
From them we obtain the connection of the para· 
meters k.,. to the Euler angles characterizing the 
rotation of the triple E(2), H( 2 )' j(2 ) relative to 

Eo>• Ho>· io> 

k4 = -'t: cos}& cos} (y + cp), 
(17) 

. 1 1 k1='t:sw 2·&cos 2 (y-ep), 

k . 1 <:< • 1 (' ) 
2 = 't: sm 2 v sm 2 '? - cp , 

k3 = 't:COS }&sin}(y +9). 

The Euler angles are chosen so that the angle be
tween the vectors j( 2)' j{l) corresponds to the angle 

between the z axes of the coordinate systems con
sidered in the kinematics of rigid bodies, the 
angle between E(2 ) and E(l) corresponds to the 
angle between the x axes, and the angle between 
H( 2 ) and H(l) to the angle between the y axes. 

Formulas (17) enable us to understand the mean
ing of the parameters k.,.. Here we should note 
that, for given P (1 ), F(l)• and P (2 )• F(2 )' the 
matrix K is determined only to within a sign, as 
follows from the properties of real spinors (which 
are determined only to within a common sign). 
However, another approach to this problem is pos
sible, if we start from other primary tensors, to 
which we shall return later. 

2. TENSORS E!XPRESSED IN TERMS OF TWO REAL 
SPINORS 

Let us turn to the important question of the 
various tensors whose components are expressible 
in terms of the components of two real spinors. 
Here we shall use the representation of a tensor 
in matrix form. 

First of all , we can form various matrix four
vectors and matrix antisymmetric tensors of the 
second rank by taking linear combinations of the 
matrices P (1)' P (2 ) and F(1 )' F(2 )' In particular, 
we set 

P( +> = P(l) + P(z)o 

F<+> = F<1> + F<z>· 

(18) 

(19) 

In addition, we can obtain, from two real spinors, 
tensors formed in another way. From the law of 

• In reference 6 there is a typographical error in the 
equation for r2 {33; there should be a plus sign on the 
right instead of a minus sign. 

transformation of real spinors, considered in refer· 
ence 2, it follows that 

nl = 'f~z>RY<I> (20) 

is invariant, not changing its form under any rota
tions or reflections of four-dimensional space. 
(For example, under the symmetry transformation A 1, A i 
= ± 1, 0 1 goes over into± tfr<;> A{ RA 1 o/ = 0 1, 

etc.) We observe that the ambiguity of sign of the 
matrix K can be eliminated by requiring, say, that 
the invariant n1 have a definite sign. 

We also introduce the matrix-pseudoscalar 

(21) 

whereupon it is easy to see that 0 2 is a pseudo· 

invariant, changing sign under reflections of the 
four-dimensional space and remaining unchanged 
under four-dimensional rotations. Using formulas 
(10), (17) and (13), we can write the following 
expressions for nl and n2 : 

01 = k2P(1) = 't:P<l) sin} & sin} (y- cp) (22) 

= YP<1>P<2> sin} & sin~ (y- cp), 

02 = kiP(l) = 't:P(l) sin} & cos} ('f- cp) 
(23) 

V-- 1 1 
= P<1>P<2> sin 2 & cos 2 (4- cp). 

From the law of transformation of real spinors, 
it further follows that we can also introduce a 
four-dimensional vector, a pseudovector and a.n 
antisymmetric tensor, defined according to the 
formulas: 

q·a. = Y;2)R4Ra.Y<1>• Q = qa.R"" = q + q4R4 , (24) 

na. = 'f;2>R Ra.Y<1>• N = Jna.Ra. = Jn + n4R, (25) 

' i 
<I>= R B + R4D, Bt = Y<2> R Y<I>• 

Di =- 4;2>1RiY<I>· (26) 

Using (10), we can express all these quantities 
in terms of k ... P( 1) and the components of E(l)' 

Ho> and j(l)' Thus, for example, 

q =- k2 E(l) + kl H(l) + k4j(l)• q4 = k4P(I)• (27) 

n = kl E(I) + k2 H(I) + kaJ(Ilo fl 4 = kaP<Ih (28) 

(29) 
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This in tum enables us easily to find the relations 
between different tensors, to which we shall re
turn later. 

If we make use of the operation of differentiation, 
then we can obtain, from two real spinors, another 
whole set of four-dimensional tensors. For ex-

a¢'(1) 
ample, the quantities _ R ¢ 0 ) are com-

ax"' 
ponents of a four-dimensional vector, etc. 

We see that we can, from two real spinors ¢(1 ) 

and ¢(2)' obtain a large number of different tensors. 
In establishing relations between them and in 
studying their properties, it is expedient to look 
at groups of tensors which are related through some 
comm>n property. As such properties we consider 
two types of transformations of real spinors, and 
shall distinguish the set of tensors whose com
ponents remain invariant with respect to one of 
these transformations. 

A spinor transformation of the first type is one 
for which simultaneously ¢(1) changes to 

[exp {Jf)]¢0 ) and ¢(2)to [exp (- Jf)]¢(2)• 
where f is an arbitrary pseudo-invariant function. 
It corresponds to a gauge trans foriiB tion in the form 
introduced in reference 5 in considering systems of 
relativistically invariant differential equations of 
first order for two real spinors. ·It is not difficult 
to see that under such a transformation, 01' 0 2 

and the components of P(l )' P (2 ) and ci> remain un
changed. There are no other tensors which are 
expressed linearly in terms of two real spinors 
(and do not contain their derivatives with respect 
to x"'). 

We say that a spinor transfonnation is of the 
second type if it changes ¢( 1 ) to cos f¢(1) 

+sin f ¢<2> and ¢(2) to cos f ¢(2)- sin f tP(l)' 

where f is an arbitrary invariant function. Under 
transformations of the second type, 0 1 , 0 2 and the 

components of the rna trix-vector P(+)• the matrix
pseudo vector N and the matrix-tensor of second 
rank F(+) do not change. The transformation we are 

considering will be shown in a later paper to cor
respond to the gauge transformation of the wave 
function which appears in the Dirac equation for 
the electron. In studying quantities which are 
invariant with respect to this transformation, it is 
convenient to use the notation: 

'\~<+> = '\1(1) + i·~(2)> '\~~+> = '\1~1) - i'\1~2)• (30) 

Then 

0.1 =} i'l>~+>R'\1<+), 0.2 = ; i'l>~+>R4'\i<+l> 
Ft-f> =- 'l>~+>RR'''Rf>'h+), 

P(+> = i~> + i~> = ·¥~+>R4R"'l><+>• 
1 .• RR" n" = 2 t'l><+> '¥<+>· 

(31) 

(32) 

(33) 

(34) 

Of course, the imaginary unit i is introduced only 
for convenience of notation, and need not be used. 

3. PROPERTIES OF TENSORS WHICH ARE INVARIANT 
WITH RESPECT TO SPINOR TRANSFORMATIONS OF 

THE FIRST TYPE 

We first consider the question of the properties 
of the quantities 01' S = 0 2 ], P( 1 )' P( 2 )' cf>, which 

do not change under spinor transformations of the 
first type. 

From Eq. (29) we have 

82 _ 02 = Q~- 0.~, (BO) = - Q1Q2, (35) 

i.e., 

!f>2 = Ql2 -- Q~ - 2Q Q J 
~ 1 2 

(36) 

As for the matrices P and p , their squares are 
(1) (2) 

obviously equal to zero, 

(37) 

We calculate the products of these matrix-vectors. 
According to reference 4, 

P<1>P<2> = CJ<1> j(2>) - P<1>P<2> (38) 

+ R fj(l) J<2>l + R4 CP<1> .l<2> - P<2> J<1>)· 

Furthermore, in accordance with Eqs. {13), (16) 
and (29), 

(j<1d<2>)- P<1>P<2> = - 2 (Q~ + Q~), 
[j<1d<2>l =- 20.1 B- 2020, 

P(ld!2l- P<2d(l) =- 20.10 + 2!22 B, 

so that 

(39) 

(40) 

(41) 

p(1)p(2) = - 2 (Q~ + Q~)- 2 (Ql + Q2J) ct>, (42) 

p(2p(l) =- 2 (O.i + Q~) + 2 (Ql + Q2J) cf>. (43) 

In addition, we get from Eqs. (26) and (16) 
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[BD] =- } (P<1d(2l + P<2l i<1J), (44) 

so that 

P<1lj(2l =- 01 D + 02 B- [BD], (45) 

Thus, assignment of <I>, D1 and D2 determines the 

directions of the vectors j (I) and j(2 )' but not their 
lengths P(l) and p( 2) (since the components of <I> 
do not change under simultaneous multiplication 
of tfr (l) by some number and division of tfr (2 ) by that 
same number, etc.). On the other hand, according 
to Eqs. (42) and (43), the matrix-tensor <I> is 

uniquely determined by giving p (l)' p (2)' nl and 
n2' so long as nl and n2 are not simultaneously 

equal to zero. 
Multiplying both sides of Eqs. (42) and (43) on 

the left and on the right by the matrices P(l) and 
P(2)' we obtain 

<P p(1) = (01 - 021) p(1), 

<PP<2> =- (01- 021) P<2l> 
p(1)<P = - p(1) (01- 021), 

p(2)<I> = p(2) (01 -021). 

(46) 

Now let us settie the question of the effect on 
tfr(l) and tf( 2 ) of various matrix-tensors which are 
invariant with respect to spinor transformations of 
the first type. From Eqs. (26) and (29) it follows 
that 

Similar! y, we get 

<P•f<2) = - (01 - 021) ~(2)• (48) 

whose validity can be established by interchanging 
lf(l) or. and o/( 2 ) or. in Eq .. (47). 

Furthermore, we find from Eqs. (10) and (16) 

p(2)~(1) = 2 (02 - 011) ~(2) (49) 

=- 21 (01 + 021) ~(2)• 

Finally, interchanging tf(l)or. and tf( 2 )or. in Eq. 
(49), we will have 

p(l)~(2) = - 2 (02 - 011) ~(1) (50) 

= 21 (01 + 021) ~(1)· 

It is easy to see that the relations (47)- (50) are 

not changed by a spinor transformation of the first 
type. 

Up to now we have started from the two spinors 
lf(l) and o/( 2 ) and have found, with their aid, 

tensors which are invariant under spinor transforma
tions of the first type. A completely different 
approaGh is possible here. We could consider that 
the primary quantities are p(l)' p (2)' nl and <I>, 
connected by the relations given above [ cf Eqs. 
(35)-(46)]*. We define the real spinors tf(l) 

and o/( 2) as columns of four numbers which are 

found from Eqs. (49) and (50). Then, after multi
plying both sides of Eqs. (49) and (50) on the left 
by P(l) and P( 2)' we get Eqs. (47) and (48). 

We show that if we determine tf(l) and tf( 2 ) in 
accordance with Eqs. (49) and (50), then by a 
suitable choice of the corrmon factor in tf(l) and 
tf( 2 )' we shall have 

/t1> = P't1) = ~;1)R4R"'•f<1>• (51) 

lc.2> = ~;2)R4R"''f<2>· nl = ~(2>R~11>• 

02 = ~(2R4~(1). <P"'" =- 'f~2>RR"'R"4<1>· 
For the proof of this important theorem, we find 
any solution of Eqs. (49) and (50). From these 

o/0 ) and o/(2 ), we can, by using formulas like (51), 
find associated quantities which are unchanged by 
transformatio~s of the first type, and which we 
designate as i(~), 0 1, etc. [Formulas (35):_(46) 

_!!lso e__Q.ab_$ lB to~write similar relations for P (I)' 
p< 2 >, Dl' D2 and <I>] Multiplying Eq. (50) on tlie 

left by tfr(;)R we get D/01 = D/?12 =C. We 

shall choose the common factor in t/J (l) and tfr (2 )' 

so that C = l. Then from Eqs. (49) and (50) and 
the correspondin~ equatio~ obtained by replacing 
P(l) and P(2) by P (I) and P( 2)' we have 

(P<2) - P<2>) ~(Il = 0, (P<Il- P(Il) l\l(2) = 0. 

From_Jhe first e~ation itJollows that P( 2)- P 
= C'l(1r Since P<i>= 0, P<~>= 01C'=O,andl(2>=<tf2r 
Similarly, ·We verify that P = P,(l)' from which 

~ (l) 
we finally get <I>= <1>, since <I> is expressed in 
terms of P, 1>.l(2 >, D1 and n?. Thus our assertion 
is completely demonstrated. 

* In th~ case, as pointed out above, <I> is determined 
by the assignment of other quantities. 
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As for the law of transformation of t/1( 1 ) and t/1( 2 )' 

which are defined according to Eqs. (49) and (50), 
or equivalently from Eq. (51), in order to preserve 
the tensor character of the initial quantities,it is 
necessary to suppose that t/1( 1 ) and t/1( 2 ) trans-
form like real spinors, defined according to refer
ence 2, but only to within a transformation of the 
first type (which is unimportant, since it does not 
change the fundamental initial quantities). We 
arrive at the concLusion that if in any problem we 
have to deal with a pair of real spinors, and if all 
the fundamental formulas and physicallymeaningful 
quantities are undlanged by spinor transformations 
of the first type, then we may regard the quanti· 

ties p(1)' p(2)' n1, n2' <I> as the initial quantities 
in the problem, and the real spinors will be para· 
meters determined by assigning the initial quanti
ties. 

In -reference 5 we saw that under a sp inor trans
formation of the first type, the components of the 
vector potential are changed to Ace-( fr c/ e) 
X a f/ ax"'. If We make USe of the Components 

A"', which change under a spinor transformation of 
the first type in this fashion, then we can con· 
struct another sequence of tensors containing 
products of x"' and A"', whose components are not 

changed by such transformations. It is easy to 
verify tha:t the following quanti ties are unchanged 
by such a transformation: 

• o<ji<2> e (52) 
e(J. = tf<I>R axa. + 1Lc n2 A(J., 

' . o<jl(2) e 
m"' = tf<l)R4 ox"' - 1Lc D1A"', (53)' 

r<I> , o<Ji<I> e , 4 
'1.(3 = tf(I)RR"' ox~' + 1Lc tf<IR RrJ.tf(I)A(3, (54) 

r<2> • a<Ji<2> e . 4 (55) 
"'~ = tf<2RR"' ox(/, - 1Lc •¥<2>R R"''f<2>Ar>. 

Here e"' and moe are the components of a vector and 

a pseudovector, T~~ and T~~ are the components 

of pseudotensors of the second rank. They are 
connected to the otller quantities considered in 
this section and to one another by certain rela
tions. Thus, from Eqs. (52) and (53) we get 

, o<Ji<2> (56) 
D1e"' + D2m(J. = D1tf!1lR ax"' 

1 a (Q2 + n2) 
=-- 1 2 

2 ax"' 

4 ox"' 

Furthermore, we have from Eqs. (54) and (55) 

·<X T(l) 0 •IX T(2) 0 ( ) 1 (1) <X (3 = ' 1 (2) "'(3 = ' 57 

from which, taking account of Eqs. (49) and (50) 
we find (58) 

( '" ·(1. ) (T<1> r<2>) 2~ an1 2~ an2 
/(I)+ }(2) (1.(3 + o<i) = ~-~2 OX!> - ;~,-'1 OX!> • 

4. PROPERTIES OF TENSORS WHICH ARE INVARIANT 
WITH RESPECT TO SPINOR TRANSFORMATIONS OF 

THE SECOND TYPE 

Just as in the previous section, we can also 
consider the properties of quantities which are 
invariant with respect to spinor transformations of 
the second type. From Eqs. (14) and (15) we ob-
tain · 

(59) 

In addition, we obtain from Eq. (28) and Eqs. (14)
(16) by simple calculations, 

- 4N2 = Pf+> =- 4 (.Q~ + D~), (60) 

n 0<1> + J<2>)- n4P<+> = 0, {61) 

[n,J<I> + J<2>l = [n,J<+>l = D1E<+>- D2H<+>• (62) 

n4J<+>- P<+>n = - .Q2E<+>- .QlH!+h (63) 

(64) 

Then, since 

-JNP<+> = (n:J<+>)- n4P<+> 

+ R fn.J<+>1 + R4 (n4J<+>- P<+>n), 
we shall have 

NP<+> = P<+>N =- (Dl + D21)F<+>· (65) 

Using Eq. (60) we get, from Eq. (65), 

Pc+>F<+> = 4 (Dl + .Q21) N, (66) 

NF<+> == - (Dl + D2l) P<+>· 

From Eq. (6 5) it follows that if we know ill' 0 2 , 
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1(+) and N, we can find the matrix-tensor F(+)' On 

the other hand, the matrices P(+) and N are not 

uniquely determined by the assignment ofF(+)' U1 

and 112 • This follows from the fact that the rela
tions (60), (61) and (65) remain the same if we re
place P(+) and 2N by 

P 1 = (cos oc(lf cos 2oc) P<+> 

- (sinoc/V cos 2oc)21N, 

2N1 = (cos oc!V cos 2oc) 2N 

+(sin oc/V cos 2oc )1P<+>· 

Now we can proceed to the question of the effect 
of applying these matrix-tensors, which are invari
ant with respect to spinor transformations of the 
second type, to real spinors. Starting from Eqs. 
(10), (14), (15), (22) and (23), we get 

F<+>~<1> = 2 (01 - 0 21) ~<2>· (67) 

Similarly, 

F<+>~<2> = - 2 (01 - 021) ~<1>·. (6s) 

Operating from the left on 'both sides of Eq. (67) 
with the matrix P(t). and using Eq. (66), we get 

P<+>'~<2> = 2N~(ll· (69) 

and, similarly, applying the matrix Non the left 
and using Eq. (66) we find 

P<+>'~(ll = - 2N~<2l· (70) 

These same formulas could also have been ob
tained from Eq. {68). Formulas (67) • (70) are in· 
variant with respect to spinor transformations of 

the second type. 
Just as in the previous section, we may con

sider that the restriction to quantities invariant 
with respect to spinor transformations of the 
second type can be related to the fact that the 
quantities nl' 112 , P(+)and N, and the matrix tensor 
F(+) found from them, are regarded as primary. If 
they are given, then the corresponding real spinors 
tf(l) and tf( 2 ) will be determined to within a 
spinor transformation of the second type, by Eqs. 
(69) and (70). 

In conclusion, we note that if together with lf(I) 

and lf( 2 ) we consider the components of a vector 
Aoc, which transform under a spinor transformation 
of the second type into AO( +(1/ E)[ a f/ a XO( ], then 
the quantities 

• o<Ji<+> 
~<+>R -.-+ 2e01A,., 

a.x" 
• o<Ji<+> ~<+>R4-- + 2e02A., 

a.x" 

• o<Ji<+> . P A '~<+R4R« -,- + te (+)a 13 
o.x" 
• o<Ji<+> A 

and ~<+>RR" axl'l + 2en" 13, 

which are the components of a vector, pseudo
vector, second rank tensor, and second rank 
pseudotensor, respectively, will not change under 
such a transformation. Just as in the previous 
section, we could establish relations connecting 
them with one another and with other quantities, 
but we shall not take this up here. 

Translated by M. Hamermesh 
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