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The question of the division of fluctuations into "fine-grained" (relaxational) and "coarse
grained" (vibrational) is considered. An estimate of the role of relaxation fluctuations in 
the electrical conductivity of metals is given. 

I. INTRODUCTION 

I T is impossible to describe the thermal motion in 
· condensed systems completely by means of sound 
waves or ohotons inasmuch as the discrete structure of 
the condensate is treated extremely crudely in 
such a description, through the introduction of the 
minimum wavelength A . of the acoustical vibra-

mtn 
tions; in this procedure a physical meaning is 
given only to those waves of length A > A . . But 

mm 
by means of sound waves with A> A in it is impos-
sible to describe fluctuations in the density of the 
number of particles taking place in regions of 
spatial dimensions L < Amin" An analogous situa
tion is found in wave optics: it is impossible to 
obtain an image of details of an object by means of 
light waves of lengths exceeding the linear dimen
sions of those details. In this way we conclude 
that it is possible to describe by means of 
acoustical waves only density fluctuations of 
spatial dimensions L > A . • We shall call these 
fluctuations "coarse-grai~~~,.. It is impossible to 
describe fluctuations with L < A . , or ' 'fine-mtn 
grained" fluctuations, by means of sound waves. 

Such a division of the fluctuations is introduced 
on the basis of general ideas, and it apparently 
has a meaning for condensed systems at suffi
ciently high temperatures such that it is already 
impossible to neglect processes of mixing of the 
particles of the condensate, or self-diffusion. 
From experiment it is known that such processes 
(self-diffusion) play a considerable role in liquids, 
as well as in solid bodies at high temperatures. 

Having divided the fluctuations into "coarse
grained" and "fine-grained", one can draw 
several general conclusions about both the charac
ter of the behavior of these fluctuations and the 
role of their interactions. A "coarse-grained" 
fluctuation may be represented as a superposition 
(packet) of sound waves, and therefore it possesses 
a vibrational character. It is impossible to 
represent a "fine-grained" fluctuation in the form 
of a superposition of sound waves, and it possesses 
a relaxational character; i.e., it is dispersed by 
means of diffusion, like the density fluctuations of 
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particles in an ideal gas. The interaction of these 
fluctuations leads to the damping ofsound waves, 
the energy of the sound waves being dissipated in 
the "fine-grained" fluctuations. The situation 
here strongly resembles the mechanism of dissipa
tion of the kinetic energy of a liquid in turbulent 
flow 1. 

Ordinarily the "fine-grained" fluctuations are 
neglected. However, it is certainly not obvious 
that they always play a negligibly small role. On 
the contrary, as will be shown below, in several 
phenomena {e.g. electrical conductivity in metals 
at high temperatures} the "fine-grained" 
fluctuations play a role equal to that of the 
"coarse-grained" ones. 

2. "FINE-GRAINED" FLUCI'UATIONS 

The division of fluctuations into "coarse-" and 
"fine-grained" undoubtedly possesses an 
approximate character, hut this approximation 
allows one to carry out a synthesis of the discrete 
(corpuscular} and the continuous physical 
properties of condensed systems. 

In what follows we shall consider only the 
"fine-grained" fluctuations. As far as the 
"coarse-grained" fluctuations are concerned, they 
are described in the ordinary way by means of 
acoustical vibrations. For the special case of the 
electron plasma of a metal, the "coarse-grained" 
fluctuations are described by means of the 
collective density oscillations2~ 

As already stated above, the relaxation fluctua
tions are related to the mixing processes of the 
particles of the condensate {self-diffusion}; 
therefore it is convenient to use the ideas of 
Frenkel' concerning the "hole" mechanism of self
diffusion. According to Frenkel' 3 , the number N of 

1 L. D. Landau and E. M. Lifshitz, Mechanics of 
Continuous Media, GITL (1953) 

2 P. S. Zyrianov, J, Exper. Theoret. Phys. USSR 29 
193 (1955) ' 

3 Ia. I. Frenkel', Introduction to the Theory of Metals, 
GITTL ( 1948) 
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holes in a unit volume may be expressed by the 
formula 

N _ V ~ V 0 N. _ AV N 
- v 0 --v 0• 

where v 0 is the volume occupied by one particle in 

the absence of holes at pressure p0 and tempera
ture T 0, v is the same at temperature T and pres
sure p, and N 0 is the average number of particles 
per unit volume. 

At constant p = p 0 this formula can be written in 
another way, introducing the coefficient of thermal 
expansion cx.(T): 

T 

N/No = (~ V / V)p=p, = 3 ~ cx.(1)dT. (l) 
To 

For our purposes it is preferable to treat the number 
of "holes" N as the number of particles of the 
condensate taking part in the relaxation fluctua
tions. Inasmuch as N/N 0 is not large, in calcula
ting the fluctuations of the density of the number 
of particles N it is possible to neglect their inter
action and use the apparatus of the theory of 
fluctuations in an ideal gas. Then 

(~N}2 = (N- N)2 = ~ N 0• (2) 

If one neglects thermal expansion, (f..N)2= 0. 

3. INFLUENCE OF TilE "FINE-GRAINED" 
FLUCTUATIONS ON TilE ELECTRICAL 

RESISflVITY OF METALS AT 
HIGH TEMPERATURES 

The electrical resistivity of metals , which 
depends on the temperature, is caused by the 
interaction of the conduction electrons with the 
internal electric field of the fluctuations, which is 
created, in the final analysis, by the thermal 
motion of the ions. 

In the theory of the electrical conductivity of 
metals one has heretofore considered only th.t 
interaction of the conduction electrons with the 
electric field of the sound waves{ scattering of 
electrons by phonons) or, in other words, the inter
action of the electrons with the electric field of the 
"coarse-grained" fluctuations. As regards the 
interactions of the electrons with the 
"fine-grained" fluctuations, these have been 
neglected without any justification whatever. It is 
possible to try to take account of the scattering of 
the conduction electrons on the electric field of 
the "fine-grained" fluctuations in the framework 
of the isotropic-plasma model of a metal 2. 

To solve this problem we first of all compute the 
potential of the electric field of the "fine-grained" 
fluctuations. According to the result of reference 
2, within the domain of the plasma model of a 
metal the potential of the electric field of an ion, 
screened by the collectively coherent electrons, 
has the form 

? (r) = (e2 / r) exp {- q0 r}, (3) 

where e 2 is the charge of the ion, and q0 is the 

Debye wave number, equal2 to w /u ( w =the 
02 0 02 

Langmuir frequency of oscillation of the ions, 
u0= velocity of sound in the metal). This form of 

the potential also follows from simple physical 
ideas. In the electron plasma a charge moving 
with a velocity considerably smaller than the mean 
velocity of the chaotic electron motion, is 
screened by electrons over a distance of the Debye 
radius of polarization. In metals, the velocity of 
motion of the ions is considerably smaller than the 
mean velocity of the chaotic motion of the electrons, 
which are distributed according to Fermi statistics. 
Therefore 1the Debye cloud of polarization of the 
ion will be practically indistinguishable from a 
sphere. Formula (3) also reflects this fact. The 
same form for the potential of the ion is used in 
the work of N ordheim4, but the quantity analogous 
to q0 was considered as an unknown constant. 

The potential <I> created by the density fluctua
tions of the electric charge e 2(o p) is equal to 

.n \ 8p (r') { I '/1 d ' 
',l-1 = e2 j I r - r' I ex p - qo r - r f r . (4) 

This formula can be rewritten in another form by 
introducing the Fourier components of the 
quantity op and of the potential <fl (r): 

<I> ~ 41t'e2 (" . = L.J--- op) e•qr. 
q2 -I.. q2 q 

q D• 
(5) 

-----
It is obvious that (op)! =(f.. N) 2 =(f.. V /V) N 0, 

inasmuch as 

The scattering of the conduction electrons by the 
electric field of the "fine-grained" fluctuations 
can be evaluated by introducing the mean free path 
lM. According to Seitz5 , lM can be expressed in 

4 L. Nordheim, Ann. Phys. 9, 607 (1931) 
5 F. Seitz, The Modem Theory of Solids, McGraw-Hill, 

New York (1940), p. 526 
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terms of B(k, k '), the square of the matrix element 
o.f the interaction energy of the electron with the 
field <1>, by the formula 

r;;l = 161t'3 ( dk )"' 
dE E=E, 

(6) 

Vk~ S B (k, k') (1- cos&) sin &d&, 

where V is the volume of the metal, E 0= "h 2k~ I 2m 
is the upper limit of the Fermi distribution. The 
quantity B(k, k ') depends on lkl and on the angle 
()between k and k ', the wave vectors of the 
electron in the initial and final states (elastic 
scattering), and it is equal to 

B (k, k') =IS 'Y: (r) e<I> (r) 'Yk' (r) dr j2 • 

Substituting into this the wave functions of the free 

electron 'Pk(r), normalized with respect to the 
volume V, we find 

Substituting this expression into Eq. (6) we obtain 

Here 

+In [l + (4k~/ qb)J -1. 

The electrical resistivity PM caused by the scat
tering of the conduction electrons by the "fine
grained" fluctuations, is calculated by the 
well-known formula 

(9) 

in which n0 is the density of conduction electrons 
and v(k0 ) is the electron velocity at the Fermi 
surface. Substitution of (8) into (9) gives a 
formula for pM: 

,.J"2m e~ 
PM = E'_l. r (qo,ko) N. (10) 

o no 

Noting (1) and the equality N 0= nofz (z is the 
number of conduction electrons per ion), we 
transform (10) into the form 

,.vzme~ (av) 
PM = I!J• z v r (qo. ko)· (11) 

0 

The ordinary electrical resistivity p is composed 
of p and. pK , due to the scattering of the 
confuction electrons by the "fine-grained" and by 
the "coarse-grained" fluctuations respectively. 

The electrical re~istivity pK was computed in 
reference 2. Evaluation of pM and pK carried out 

for T » e D (-in the region in which our calcul~
tions are justified) shows that pM and pK are 
quantities of the same order of magnitude. 

Let us consider the qualitative conclusions 
which can be drawn from equation (11). 

(a) The temperature dependence of PM is 
determined by the integral 

T 

( AV) • v _ =3~cx(T)dT. 
, P-Po T, 

According to the Griineisen rule 6 , the ratio of the 
specific heat cf to the coefficient of thermal 
expansion oc. (T does not depend on the 
temperature. ForT» eD( eD is the Debye 

temperature) the specific heat cv does not depend 
on T; consequently oc. also does not depend on T, 
so that pM "' T. 

(b) PM is proportional to the relative change of 
volume and does not depend on the causee: of 
that change - external pressure or thermal 
expansion. This conclusion is apparently 
supported by the experimental data in the case of 

mercqry 7• 

(c) Equation (11) reflects the experimental fact 
of the d_iscontinuous change oi electrical 
resistivity of metals upon melting and the propor
tionality of the size of the discontinuity to the 
volume change at the melting point. For the metals 
Bi, Ga, and Sb, a V /V is negative at the melting 
point; consequently the electrical resistivity at 
the melting point must decrease. The thermo
dynamical theory of MottS leads to. an increase of 
the electrical resistivity of these metals, which is 
found to contradict expetiroent. 

The order of magnitude of the di$continuity in 
the electrical resistivity also agrees with 
experiment. According to the experimental data 
the jump in the electrical resistivity is of the 
order of magnitude of the electrical resistivity in 
the solid phase. From reference 2 it follows that 
pK does not change significantly in melting (by 

6 E. Griineisen, Ann. Phys. 26', 211, 393 (1908). 
7 S. Shubin, J. Exper. Theoret. Phys. USSR 3, 461 

(1933) 
8 N. F. Mott, Proc. Roy. Soc. 146, 465 (1934) 
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only a few percent) in comparison with PM· 

Consequently the discontinuity is essentially 
caused by the change in PM in melting. It is 

known 3 that the volume change in melting is, for 
instance, equal to the increase in volume upon 
heating the metal from absolute zero to the 

melting point. Thus the change in pM on melting 
is of the order of /j.pM"' pM "' P· 
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