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A theory of the acceleration of charged particles of an isotropic gas magnetic turbulence 
is developed. A kinetic equation is derived to determine the spectrum of rapid particles, 
and a method is given for solving this equation for various cases (stationary and non­
stationary spectrum, account of magnetic-braking losses, etc.). The investigation makes 
wide use of the method of the theory of shower processes in cosmic rays. 

T HE considerable recent progress in the 
determination of the origin of cosmic rays is 

due to the rapid development of radio-astronomy I .2. 

It has become clear thereby that the most likely 
mechanism of cosmic-ray formation is the 
statistical acceleration of charged particles in a 
turbulent gas magnetic medium 2 ·3. A certain role 
may also be played by the mechanism of induction 
acceleration in an increasing magnetic field 4 •5 • 

An interesting variant of the statistical mechanism 

was proposedbyFermi 6 , namely, the acceleration of 
particles in a ''trap" between two approaching 
magnetic bursts such as may form in gas magnetic 
shock waves. 

The present theories of statistical or induction 
acceleration 3 •5 are not entirely satisfactory in 
view of their sketchiness, and in view of the in­
complete account of the braking and absorption of 
particles. The question of the source of the 
primary acceleration of the particles, the so-called 
injection, still remains unsolved. 

This article develops a theory of gas magnetic 
acceleration of charged particles, taking into ac­
count both the statistical and the induction 
mechanisms, and permitting us, at least in principle, 
to account for all possible conditions of injection, 
braking, and absorption of particles 7• In the 
development of the theory we shall employ the 
mathematical methods of the theory of cosmic 
showers. 
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1. ACCELERATION OF Q-IARGED PARTICLES 
BY GAS MAGNETIC FIELDS 

1. Statistical Acceleration by Gas Magnetic 
Turbulence. This mechanism is discussed in many 
investigations 2 •3 ' 7 •8 • We shall therefore cite here 
only the final equations. When particles ''collide" 
with a magnetic field fluctuation that moves with 
a velocity u, the energy E of the particle 
(including the rest energy) changes by an amount 

I !1£ I ~ U'Vx:.) E. (l) 

here v(E) is the velocity of the particle, and c is 
the velocity of light. The quantity ~ E is positive 
if u and v are in opposite directions, and negative 
otherwise. Thanks to the unequal probability of the 
positive and negative variations of the mean 
energy increment, we have 

b..E- .!!!__ E (2) ____. c2 . 

The particles are thus systematically accelerated 
in this case. The magnitude of this acceleration 
computed per unit length, is given by the following 
equation 

(ddE ) = ( ~21 ) E = oc1 (t) E, (3) 
\ X turb c 

where the averaging is performed over all vortex 
dimensions l that satisfy the conditions l >r 
(inasmuch as Eqs. (1) and (2) are correct only in 
that case, in which the characteristic dimension 
of the fluctuation is greater than the radius of 
curvature r of the particle trajectory 7 ' 8). As the 
measure of the intensity of the energy fluctuations 
D(E,t), namely the coefficient of diffusion along 
the ''energy ·axis", we have 

-.. 1 
D (£, t) = (!1E)2 / 2l = zc2 oc1 (t) [Ev (£)]2. (4) 

8 A. A. Logunov and Ia. P. Terletskii, J, Exper. 
Theoret. Phys. USSR 26, 129 (1954) 
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2. Induction Acceleration by Gas Magnetic 
Fields. It is well known lhat if the magnetic 
field intensity H increases systematically, the 
energy of the particles contained in that field also 
increases. To calculate the change in energy in 
this case it is most convenient to employ the 

adiabatic invariant4 : 

I= 3T: c Pi/ eH. (5) 

Here Pt is the tangential component of the momen­
tum and e is the charge of the partiCle. Assuming 
the velocities of the particles to be isotropic and 
using the well known relationship between the 
momentum and energy of the particles, we have 

d Jn Pl d ( E.·'2 ") 
~ = dtln --zz- m2c-

Hence 

( dE. 1 (dE) 
dx )ind = V (E) dt- )ind 

dlnH 
dt 

(6) 

= 'll (E)" E dIn H = oc., (t) v (E) E. 
2c- dt - c 

3. Acceleration in Gas Magnetic Bursts. If a 
shock wave is formed in a gas located in a mag­
netic field, a sharp change in the field intensity 
and direction of the magnetic field takes place in 
the wave in addition to the discontinuity in 
density and pressure. If a particle is subjected to 
multiple ''reflections" from a system of such 
bursts, the energy of the charged particle may 
increase by a noticeable fraction of its inertial 
value (reference 6 estimates this increase to be 
approximately 1 0-20%). It must be noted that the 
formation of a whole system of gas magnetic 
shock waves is quite frequently encountered in 
cosmic conditions. For example, the Crab Nebula, 
which is one of the most powerful sources of radio 
waves, is undoubtedly such a system, and is 
consequently also a source of cosmic radiation 
(according to references 1 and 2). However, this 
mechanism of acceleration6 which, generally 
speaking, is a variant of the statistical mechanism, 
has not yet been studied in detail, and it is there­
fore still difficult to estimate its validity. If its 
role is really important, a very rough approxima­
tion can be obtained by using equations similar to 
(3) and (4), with additional factors, depending on 

multiplicity of the reflections in the ''trap" 
- using Fermi's terminology6- i.e., in the region 
between two approaching .bursts. For a more ac­
curate analysis it is necessary to calculate the 
mean energy charge in the "trap" and then take 
into account the probability of. the particle falling 

into this trap. For this, however, it is necessary 
to know the detailed structure of the system of gas­
magnetic shock waves. 

Although the acceleration by gas-magnetic 
shock waves is probably less important than the 
statistical or induction acceleration, this mecha­
nism is apparently of primary importance for the 
injection, i.e., for the initial acceleration of the 
particles to a threshold that exceeds the level of 
energy losses by ionization. Let us first remark 
here that we detected intense sources of radio 
waves (testifying to the presence of rapid elec­
trons) in the exact places where systems of gas 
magnetrc shock waves exist (Crab Nebula, 
colliding galaxies, and similar objects 9 ). 

Shklovskii 9 notes that when the shock waves have 
velocities of the same order as observed in the 
Crab Nebula, the thermal velocities of the electrons 
behind the wave front already approach the injec­
tion threshold. True, this does not explain the 
primary accelerations of the protons and of the 
heavy nuclei which, generally speaking, should 
be more probable than the acceleration of the 
electrons 2 • It seems to us that a thorough exami­
nation of the processes occurring in a gas-mag­
netic shock wave (including the process of the 
acceleration-in-a- "trap" type) will confirm the 
hypothesis concerning the injection of charged 
particles in gas magnetic shock waves. We shall 
not concern ourselves here with this question, 
partly because of its difficulty, and partly because 
the only thing we need to know for future considera­
tions is the quantity v(t), the total number of 
particles injected per unit volume per second. It 
is evident that 

v (t) = ~ v (E, t) dE, (7) 

0 

where v(E,t) is the number of injected particles 
with energies ranging from E to E + dE. The 
quantities v (E ,t) are obtainable by analysis of the 
acceleration process in gas magnetic shock waves. 
As far as v{t) is concerned, we generally surmise 
that v (t) is proportional to the energy dissipated in 
the gas magnetic shock waves. In the future this 
assumption will provide us with at least a 
qualitative estimate of the injection. 

4. Expression for the Acceleration Parameters 
in Terms of Spectral Functions of Gas Magnetic 
Turbulence. If the gas magnetic medium in which 
the p.articles are accelerated is in a state of iso­
tropic turbulence, the quantities u, l and H in Eqs. 
(3), (4) and (6) can be expressed in terms of 

9 I. S. Shklovskii, Dokl. Akad. Nauk SSSR 98 353 
(1954) ' 
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F(k, t) and M (k, t ), itamely, the spectral functions 

of the kinetic energy 1 0 , respectively: 
1 00 

oc1 (t) = ~r F (k, t) k dk, 
T: c .\ 

0 

00 

1 d ( 
oc2 (t) = --;;r dt In~ M (k, t) dk. 

Taking into account the assumption that v(t) is 
proportional to the energy dissipation in the gas 
magnetic shock waves, we can also write 

00 

(8) 

(9) 

'I (t) ,...__ ~ [F (k, t) k 3 ]'1, [(f (k) F (k, t) (10) 
0 

- Cm (k) M (k, t)] dk. 

here the wave number k = 277/l and ~ f (k) and 
'm(k) are positive, slowly varying functions on the 
order of 1/10. The quantities F(k,t) and M(k,t) 
determine the kinetic and magnetic energy per 11nit 
mass, respectively, contained in vortices having 
wave numbers ranging from k to k + dk. For more 
details concerning the spectra of gas magnetic 
turbulence see reference 10. 

2, BRAKING AND ABSORPTION OF PARTICLES 

Along with the acceleration considered above, 
the moving particle will also experience braking 
because of the following processes: 

(a) Ionization losses, as determined by the 
following equation2: 

( d r: ) 4rrnee4 . -rc2 ( ) 
- dx . = m v 2 (E)p(E, ne) = v~(E)' ll 

ton e 

where p is a function that exhibits a weak 
dependence on its arguments, and ranging approxi­
mately from 20 to 200 under cosmic conditions2. 

(b) Braking of rapid electrons by radiation in the 
magnetic field. 

-(dE) =2_(~)'4!-fl_£2 =~(t)£2, 
dx mag 3 mec 

(12) 

~ (t) = 16;P ~ M (k, t)dk, 
0 

where p is the gas density. Here it is assumed 
H1,., 28 2/3. 

10 S. A. Kaplan, Dokl. Akad. Nauk SSSR 94, 33 (1954); 
J, Exper. Theoret. Phys. USSR 27, 699 (1954) 

(c) Braking of electrons by photon radiation and 
braking of protons by meson radiation. We shall 
~enote. by (1/x0) cp0 (y)dy, where x is the radia­
tion umt length, the differential pro~ability that a 
particle with energy E will have an energy in the 
interval from (l - y ) E to (1 - y - dy) E after 
radiating a photon or a meson over a one centimeter 
path. For the braking of electrons in un-ionizeJ 
hydrogen we have: 

1 4n ( e2 )2 
"Xo = 137ln <137) rruj2 • (13) 

I{ the hydrogen is ionized, x 0 is several times 
greater. The value of x 0 for the braking of protons 
by meson radiation is on the order of 13 (this is a 
coincidence). In the case of total shielding; the 
function cro<r)dy has the following form 11 : 

<fo(y)dy = [1 + Y2 - ~ Y] dyjy. (13 ') 

Usually the acceleration particles occur in regions 
where the gas is ionized and where the shielding 
consequently takes place only in 'the case of very 
large energies. In the absence of shielding it is 
necessary to multiply (13 ') by a factor that is 
logarithmically dependent on the energy. But this 
factor, which complicates the theory excessively, 
does not appear to be of importance in the problems 
discussed by us. So far, we know of no equations 
analogous to (13 ') for the braking of protons by 
meson radiation. 

(d) Energy pulses by electron due to the inverse 
Campton effect 1 2: 

(14) 

Here nph and E h are the average number and 
average energy of the scattering photons. This 
mechanism is thus analogous in its energy 
dependence to the braking of electrons in a 
magnetic field, differing from it only in that in this 
case the energy losses occur, so to speak, in large 
doses. 

(e) Finally, in some cases it is also necessary 
to take into account the ''annihilation" of fast 
particles, for example, in the case of nuclear 
reactions. We shall denote the length of the mean 
free path for this process by A. Evidently 

JfA = ~nAaA, (15) 
A 

11 S. Z. Belen'kii, Shower Processes in Cosmic Rays, 
GITTL, Moscow, 1 948 

12 L. D. Landau and Iu. B. Rumer, Proc. Roy. Soc. 
(Lonaon) A 166, 21 3 (1938) 
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where n A is the number of nuclei capable of 
entering into reaction per unit volume and a A is 
the corresponding effective cross section. 

The first two ene~gy-loss mechanisms are con­
tinuous. We shall take account of them by writing 
the algebraic sum for the value of the systematic 
change in energy. 

(dE\ 
dx) tot 
- (dE ) I dE ) + (dE ) + (dE \ 
- d.x turb + \dx ind \dx mag dx hon 

(16) 

The remaining loss mechanisms should be accounted 
for by the corresponding terms in the kinetic 
equation. The most difficult to account for is the 
inverse Compton effect, because of its nonlinear 
dependence on the energy. In those (relatively 
rare) cases, when this effect must be taken into 
account, we shall therefore simply add Eq. (14) to 
Eq. (16). 

In concluding this section, let us note that along 
with the acceleration, absorption, and braking of 
particles, it is also necessary in certain cases to 
take into account the direct formation of fast 
particles, for example, in the decomposition of 
mesons into electrons, in pair formations, in 
nuclear reactions, etc. These processes can be 
accounted for either by adding corresponding terms in 
the expressions for the injection, or else by setting 
up a system of kinetic equations with terms that 
account for the production of particles of a given 
kind by particles of another kind. 

3. KINETIC EQUATION FOR THE SPECTRUM 
OF RAPID PARTICLES 

In many cases of practical interest we can 
assume that the particle accelerates in the region 
of isotropic and homogeneous gas magnetic 
turbulence, where the primary sources, the injec­
tors, are also uniformly distributed. This condi­
tion is satisfied, for example, if the injectors are 
gas-magnetic shock waves, which are bound to 
occur in a region occupied by a supersonic gas 
magnetic turbulence. In these cases we can dis­
regard the spatial diffusion of particles, greatly 
simplifying the subsequent computations. Let us 
remark, however, that accounting for the spatial 
diffusion does not lead to any difficulties, in 
principle,in the mathematics5 (see below). 

In formulating the kinetic equation for the distri­
bution function N (E,t) of rapid electrons we must 
take into account both the systematic and 

stochastic accelerations of the particles (section 
1 ), as well as the energy losses and absorption of 
the particles (section 2), and finally the injection. 
The systematic and stochastic acceleration, as 
well as the ''continuous" losses, are taken into 
account using a method that is customary in this 
theory, that is, by writing down the expressionS: 

-a~ [(~~)tot N(E, t)J (1 7) 

+ 0~2 [D (E, t) N(E, t)]. 

The braking by the radiation is taken into account 
in accordance with the theory of cosmic showers, 
using the following expression 1 1 : 

1 

~o~L1YN(1Ey,t) (18) 
0 

- N (E, t)] rp0 (y) dy. 

The absorption of particles is accounted for by a 

terml N (E,t). We thus have for the total change 
A 

in the number of particles per unit volume per 
second 

v(1I:) i!Nb7,t) =- i!~ [(:~)tot N(E, t)] 
i)2 + i!£2 [D (E, t) N (E, t)] 

1 

1 \ [ 1 v(__!!__ t) + x 0 .\ 1 - y 1 1 - y ' 
0 

(19) 

- N(E, t)] 9o (y) dy- ,~ N(E, t) + v ~(;)) 

This equation, together with Eqs. (3), (4), (6), (8) 
to (13), (15), and (16), determines the spectrum of 
the rapid particles. When solving this equation it 
is necessary to assume that the coefficients of 
this equation, together with the expression for the 
injection and the initial distribution function of 
the particles, areknown. 

Equation (19) is valid for both relativistic and 
nonrelativistic regions of the particle spectrum. 
From now on, we shall restrict ourselves to the 
simpler and at the same time more interesting 
relativistic particles. In fact, if we exclude the 
corpuscular streams from the sun, where the 
acceleration is probably of more complicated 
character than the acceleration of the isotropic gas 
magnetic turbulence considered here, we nee~ . . 
consider in all the remaining cases only the relativistic 
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region of the spectrum, both with respect to cos­
mic rays directly, as well as with respect to the 
magnetic-braking radiation. Besides, all the 
simplifications are reduced in the relativistic 
case to the assumption v (E) = c. The results 
obtained below will, therefore, he valid, in rough 
approximation, for nonrelativistic particles that 
are not too slow. 

Thus, assuming v (E) = c, and taking into 
account the expressions given above for the coef­
ficients of Eq. (19), we obtain 
{)N (E, t) 

dt 

8 (200 
=- c iJE [ ( rl (t) E- ~ (t) E~ - 1) N (E, t)] 

+ ; Crl!{t) ()~22 [£2 N (E, t)] 

1 

+ ;o ~ [1 
1 y N (1 E y , t )- N (E, t)] 9o (y) dy, 

0 

- ~ N(E, t) + v(E, t). 

Here a.(t)= a. 1 (t) + cx. 2 (t), where we shall also 
include the acceleration in the ''traps". The 
solution of Eq. (20) will be" discussed below 

Let us remark again that Eq. (20), like Eq. (19), 
does not take into account the spatial diffusion of 
the charged particles, occurring when the injector 
distribution is non-uniform. If it is necessary to 
take this into account, a term lci'.!>}V(E,t,r)/3 is 
added to the first part of Eq. (20), where !J.r is the 
Laplacian and the spectrum N(E,t,r) depends also 
on the coordinate r. 

Equations of the type (20), taking into account 
the spatial diffusion, are discussed in reference 5, 
where it is assumed, however, that the accelera­
tion of the particles was due to an induction 
mechanism that becomes operative when the 
magnetic field intensity increases. In addition, 
reference 5 does not account for the braking with 
sufficient accuracy (the third term of the right 
half of (20) is lacking). Instead of taking into ac­
count the last term of (20), reference 5 seeks a 
source-type of solution, i.e., all particles are as­
sumed to ''escape" into the accelerating medium 
with the same energy. Thus Eq. (20) (see also 
reference 7) is more general than the analogous 
equation in reference 5 (in the sense that the 
braking and the acceleration of the particles are 
accounted for), and as we shall see below, it 
permits finding a more general solution, one that 
approximates more closely the actual cosmic 
conditions. 

In conclusion let us remark, that if we are not 

interested in the dependence of the particle 
spectrum on the coordinates it is easy to calculate 
the particle diffusion from the region of the gas­
magnetic medium consideration, by adding to the 
right half of (20) a term (2cl/L 2)N(E,t), where L 
represents the linear dimensions of the system. In 
other words, instead of A it is now·necessary to 
substitute in Eq. (20) the quantity 

1 - ~ - 21 A- L..in..4.-'A + u. (15 ') 

Equation (20), together with (15 '), accounts for 
the diffusion of particles from the acceleration 
region with sufficient accuracy for the assumptions 
of the theory. Generally speaking, as follows from 
the observed fact that the proton spectra are 
similar to those of heavy particles, the first term of 
(15 ') is smaller than the second term 6. 

4. SOLUTION OF KINETIC EQUATION 

Equation (20), the same as the kinetic equations 
of the theory of cosmic showers, is best investi­
gated with the aid of the Mellin transform 1 2 • Multi­
plying (20) byEs dE, integrating from 0 to oo, and 
assuming that the distribution function vanishes 
both at E = 0 as well as at E --. oo, we obtain 

am (s, t)jot = 1/2 c [s (s + 1) rlr{t) 
(21) 

+ 2soc2 (t)] ffi (s, t)- cs~ (t) ffi (s + 1, t) 

- qffi(s -1, t)- ~A (s) ffi(s, t) 
Xo 

co 

- ~ ffi(s, i) + ~ Esv (E, t)dE. 
0 

The following designations are used here: 

co (22) 

ffi(s, t) = ~ E 5N(E, t)dE 
0 

and 
1 

A (s) = ~ [1- (1- y) 5 ] rp0 (y) dy. 
(23) 

0 

The function A(s) is tabulated in reference 11 for 
electron braking by photon radiation. The quantity 
s, which becomes the variable in Eq. (21) instead 
of the variable E in Eq. (20), can be complex. 
After finding the function R (s,t) from (21 ), the 
particle spectrum is determined with the inverse 
Mellin transform: 
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8-i-ioo 

N (E, t) = 2~i ~ E-s-1ffi (s, t) ds, (24) 
ll-ioo 

where the path of integration is a straight line 
parallel to the imaginary axis in the positive half 
of the complex plane 1 1 • 

Equation (21) is a differential equation in t and 
a finite difference equation in s. The general 
solution of (21) will be discussed below, and we 
shall restrict ourselves at the present time to the 
case when the terms with {3 (t) and y can be 
neglected. Then (21) can be integrated with 
respect to time directly 

f 

ffi (s, t) = ~ v (s,t') exp {/ (s, t, t')}dt'. (25) 
0 

where the following designations are introduced: 
00 

v(s, t) = ~ v(E, t)E 5 ¢E, (26) 
0 

[ A (s) . 1 J 
-c --+-' x 0 A 

t 

J(s, t, t')=~<D(s, t")dt". 
t' 

In addition, we subject (25) to an initial condition 
~(s, 0) = 0, which does not limit the physical 
generality of the solution. The particle spectrum 
is obtained, as was already noted, but inserting 
(25) into (24) 

N(E, t) 

N(E, t) (28) 
ll-+-icn t 

= 2:iE ·~ ~ ~dt'v(s, t')exp [/(s, t, t')]. 
ll-ioo o 

Expression (28) is calculated by the method of 
steepest descents, as is usually done in the theory 
of cosmic showers. This equation can be rewritten 
in the following form 

t 8-i-ico 

N (E, t) = - 1-. \ dt' \ v (s, t') 
2rttE.) ~ (mc2)s 

o a-ten 

(29) 

x exp{-sln :!c:-t-l(s,t,t')}ds. 

The factor before the exponential in (29) is slowly­
varying in s. As s varies along the real axis, the 
exponential index reaches a minimum at the point 
s = s m (/ t,) under the following condition 

f 

In __!}__ = \ ('oa> (s, t")) dt' 
mc2 .) as s·=sm· ' 

t' 

(30) 

and consequently the integrand has a maximum at 
these points as s varies along the imaginary axis. 
Continuing with the usual procedure of the method 
of steepest descents 1 1 , we obtain 

~ ~ ~ ;~~}:~') [ exp{- Sm In ;,, + l(sm, t.t') }J/ V 2<! ~ (~!) _,m [ dt" 
(31) 

Further integration with respect to time dep.ends 
naturally on the actual form of the dependence of 
v and ex. on t. In this integration it is necessary to 
bear in mind that the value of s also depends on 
time as in Eq. (30). m 

Let us note that if nonrelativistic particles are 
injected (for example in the case of gas magnetic 
shock waves), we have 

00 

'I (s, t) ~ (mc2)5 ~ v (£, t) dE= (mc2)Sv (t) (32) 

!) 

in accordance with (7). 

Furthermore, it follows from (22) that ~ (O,t) is 
the total number of high speed particles per unit 
volume, and ~ (l ,t) is the total energy of the rapid 
particles. Consequently, Eq. (25) at s = 0 and at 
s = 1 determines the time dependence of the total 
number of particles per unit volume and of their 
total energy per unit volume, respectively. Let us 
apply the solution of (25) and (31) to the case of a 
stationary turbulence, that is, let us assume that 
ex. and v are independent of time. Then 

ffi (s, t )= v (mc2)s (e<l>(:s)t- 1)/<D (s), (33) 
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N(E, t) 

~ ; 1 [ exP{- Sm In m~' + <D (sm) (t - t')} IV 2< I";,'; 1-•m (t- t') ]dt, (34) 

where s m is determined from the condition: 

In = (dd<D) (t- t'). 
S s-=sm 

(35) 

and. 

<D (s) 

1 [A (s) 1 ] (36) 
= 2 c [s (s + 1) IX1 + 2s1X2] -c ----x; +A . 

For large values of t, integral(34) can also be 
evaluated by the method of steepest descents. If 
we ignore the dependence of the factor in front the 
exponent in (34) on t ', the exponent reaches a 
maximum at 

dsm { E (dtD) } -, -In - 2 + - (t- t') 
dt me , ds s=sm 

(37) 

- <D (sm) = 0, 

hence, according to (35), cl>(s m) = 0. After simple 
calculation we obtain finally 

N (E) dE = _v_ ( mc2 )s,+l dE I d~ I E mc2 ' (38) 

where s 0 is the root of equation flJ~s) = 0. If this 
equation has two positive nonvanishing roots, it 
is necessary to take the smaller of the two, for in 
view of the statistical character of the accelera­
tion mechanism, the system comprising the gas 

' magnetic medium and rapid particles will tend 
toward equipartition of the energy, that is, to a 
more sloping spectrum of rapid particles. 

It also follows from (35) that the time T (E) 
required to establish an equilibrium spectrum is on 
the order of 

1 E 
(E)~ I dQ) Jln mc2 . 

ds s, 
(39) 

The spectrum (38) occurs also in the nonstationary 
turbulence state, provided the characteristic time 
of its variation exceeds T (E) from (39). 

By way of illustration let us give the following 
example. By reference 2, the values of c ex. and 
c / A in interstellar space can be assumed to be 

CIX1 = 5Xl o-17 sec -1 ' 

Substituting these values into (36) and assuming 
ci> (s 0) = 0, we obtain s 0= 1.3. Substituting into 
(38) we get: 

N (E) dE= v·l01s ( 1~"t3 ~g., 
(40) 

1010 ( 109)1.3 
N(E>Eo) = v 1. 3 _£ . 

Here the energy is given in electron volts. Accord­
ing to references 1 and 2, the sources of cosmic 
radiation are supernova bursts. Considering them 
to be injectors, we have as an estimate for 

V= 
number of rapid particles formed in supernova 

frequency of supernova burst X volume of galaxy 

1051 .,Io-26sec- 1 cm-3 .(41) 

30 X 3 X 10 7 X 106 S 

Substituting into (40) we get 

N (E) dE~ 1 o-1o ( 109)\2.3 ~ 
~ E 1Q9 ' 

which is in rather good agreement with observed 
data. 

We gave this simple numerical calculation only 
as an example, without dwelling at all on the great 
importance of particular acceleration in inter­
stellar space. It is also possible to consider in 
an analogous manner the acceleration of particles 
in the expanding ejected supernova shells. Inas­
much as we deal here with a nonstationary problem 
the starting equation is (31 ). 

In conclusion. let us dwell shortly on the calcula­
tion of the ioni:~;ation and magnetic-araking losses. 
Inasmuch as the former occur at low particle 
energies, and the latter at large energies, there is 
no practical interest in joint evaluation of both 
effects. We shall restrict ourselves here only to 
a treatment of the method of computing the 
magnetic-braking losses. The ionization losses 
are evaluated in a similar manner. Let us note 
here that both losses will be evaluated by a method 
developed by Belen'kii 1 1 for the calculation of 
ionization losses in the theory of cosmic 
showers. 
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It is difficult to obtain a general solution for where 
(21) when f3 (t) =f. 0. It is much easier to solve 
the problem in that case when the turbulence can 
be assumed stationary, that is, when ex., {3, and v 
are independent of time. We shall restrict our-
selves to this case. 

Taking the Laplace transform of (21) at y = 0, we 
obtain 

[<I> (s)- ).] R (s, 1.) 

co 

R (s, A)=~ e-)dffi (s, t) dt. (43) 
0 

Writing analogous equations for R (S + l, ,\), 
R (s + 2, >.. ), etc. and using successive elimination, 
we obtain 

R (s, 1.) 
co 

_ v ~ (-~mc3)k(s+1)(s+2) ... (s+k+1) 
A.[<D(s)- A.]£..; [Ql(s + 1)-:A] [C!J(s + 2)-:A] ... [<D(s+k+i)-A.] • 

(44) 

h=O 

Equation (44) is the solution to the problem. The 
transformation from R (s, >..) to N (E, t) is performed 
with the aid of the inverse Mellin and Laplace 
transform 1 1 : 

N(E, t) 
(45) 

ll+ic> d+ioo 

=- 47t ~ ds ~ diR (s, 1.) E-s-Ie"At. 

il-ico d-ico 

The series (44) is essentially an expression of 
R (s, >..) in powers of f3 mc 2 / cx.,i.e., this series 
should converge quite rapidly. It is therefore 
necessary to retain only one or two terms when 
substituting (44) into (45). In analogy with 
reference 11, it is possible to simplify the calcu­
lation by using the following approximation: <l>(s) 
- >.. = f( >..) [ s - s 1 ( ,\) ] [ s - s 2 ( >..) ] • This approx­
imation is accurate when x 0 -+ oo. Here s 1 and s 2 

are the roots of the equation <I> (s)- >.. = 0. 

Finally, taking only the inverse Laplace 
transform of (44) and assuming s = 0 or s = 1, it is 
possible to obtain the total number of particles and 
their total energy per unit volume respectively. 
We shall not go through all these computations 
here. 

It follows therefore from all that has been said 
above that in many cases of practical interest we 
can calculate the principal characteristics of the 
particle spectrum of particles accelerated by a gas 
magnetic turbulence to a sufficient degree of ac­
curacy using relatively simple mathematical 
methods. The methods of these computations 
account for the various types of possible injectors 
and lead to sufficiently general assumptions 
concerning the gas magnetic turbulence that 
accelerates the particle. 

Translated by J. G. Adashko 
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