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The potential Q is defined by the following rela­
tion2 

Q==FkTV~ ~;~~fIn( i±exp{fLkre}). (8) 

Substituting Eq. {7) for the energy in Eq. {8), and 
carryin~ out the substitution of variables 
p-> p T In, we obtain 

Q =- pV = vri+afn /(fL/T), (9) 

where f is some function of a single argument. We 
take advantage now of a thermodynamic identity 
for Q and compute the entropy a. Inasmuch as n 
is a homogeneous function of /1 and T of order 
1 + 3//z, we have _ 

(oQ/oT)v,p. ( fL) (lo) 
a = (on; a ) = IJl Y · fL T, V 

Thus, for adiabatic processes (a = const) the 
relation p./T is a constant quantity 2, i.e., 

~ (..!:.) = 0. (ll) 
iJp T a 

Furthermore, from the relation N =- (JQ/Jp.)T,v 
it follows that for adiabatic processes, VT 3 /n 
= const, and, consequently, 

(~:)a= ~ ~ · (12) 

By considering Eqs. {ll) and (12), we can con­
vince Ojlrsel ves that the following expression 
holds: 

P !!__ (..!:.) + _!__ ( :_ (ar) _J:_ oe P) = o, (1 3) 
iip T a T T op a 3 op 

Thus, in the case under consideration, ( f=apn) 

the second viscosity vanishes. Thus, for example, 
the second viscosity is equal to zero in a photon 
gas ( f = cp ), and also in a monatomic gas in the 
ultra-relativistic case.Evidently, the second vis­
cosity will vanish in the liquid isotope of helium 
with mass 3 (He 3 ), which represents a set of Fermi 
particles. It is easy to see that condition (7) is 
necessary.in order that the second viscosity equal 
zero. Actually, according to Eq. (6), if the second 
viscosity \lanishes, then it is necessary that for 
all values of momenta, the following expression 
vanishes: 

(ar) p 1 oe 
e op a7-3Pap= 0• 

(14) 

or also, 

(15) 

Consequently, the energy is proportional to a 
power of the momentum, for which the power n is 
given by 

n = 3(o In T! iJ In P)a· (16) 

1 L. D. Lanadu and E. M. Lifshitz, The Mechanics of 
Continuous Media, Moscow, 1944 

2 
L. D. Landau and E. M. Lifshitz, Statistical 

Physics, 1951 

Translated by R. T. Beyer 
185 

The Surface Energy Associated with a 
Tangential Velocity Discontinuity 

in Helium II 

v. L. GINZBURG 

P. N. Lebedev Institute of Physics, 
Academy of Sciences, USSR 

(Submitted to JETP editor April21, 1955) 
]. Exper. Theoret. Phys. USSR 29, 244-246 

(August, 1955) 

0 NE of the most essential problems of the theory 
of superfluidity is, as we have already had 

. . 1 2 h . . occasiOn to pomt out • , t e questiOn concermng 
the character of the tangential discontinuity in the 
velocity v 8 of the superfluid component of 
helium, at the boundary between the fluid and a 
wall. The existence of such a discontinuity fol­
lows from the fact that the helium atoms adhere 
to the wall (a solid body), while at the same time,, 
from the macroscopic viewpoint, i.e., in the im­
mediate vicinity of the wall, the tangential com­
ponent of v at the wall is not equal to zero 3• The well­
known pro;£ 3 for the possibility of superfluidity 
consists in this case of the establishment of the 
conditions for stability of the discontinuity at the 
wall. The discontinuity and the superfluid flow 
are completely stable, provided the flow velocity 
v < vc: 

Vc = [e: (p)/ Plmin• (1) 

where f (p) and p are the energy and the momentum 
of the "excitations" which may appear in the 
liquid (both quantities are measured in the co­
ordinate system associated with the liquid). 
Within the framework of the microscopic representa­
tion, the thickness of the discontinuity is clearly 
not equal to zero, but is in order of ma~nitude equiva­
lent to the atomic distance a"' N 13 ::::- 3.5 
X 10"8 ( N = 2.2 X 1022 is the concentration of 
atoms in liquid helium). Analogous discontinui­
ties, in accordance with references 4 and 5, may 
also exist within the bulk helium II, in which case 
the situation is even simpler, since the question 
of the possible influence of the wall material upon 
the chamcter of the disconti~uity does not arise*. 
A certain surface energy a must be associated 
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with the velocity discontinuity, since this discon­
tinuity represents a local disturbance of the super­
flow, requiring the expenditure of energy 5 • As it 
seems to us, such a conclusion is even more 
natural from the quantum viewpoint, inasmuch as 
the 'P- function for the He atoms changes at the 
discontinuity within a distance "'a; whence the 
average additional kinetic energy associated with 
unit surface area of the discontinuity**, 

7i2N 7i2 2 ~ {2) 
cr ~2m a2 a~ -2--4 ~5xl0" 2 

He mHea em 

The expression (2) for a was derived in refeTence 
4 on dimensional grounds; in reference 5 there 
was obtained from similar considerations the 
formula 

{3) 

in which p5 and pare, respectively, the density of 
the superfluid component of the helium and the 
total density of the helium, TA = 2.19°, and U is 
the second sound velocity. Setting p5 "'p "-' 0.15 
and U = 2 x 10 3 em/sec, we obtain a"-' 5 x 10"2 ; 

i.e., the approximations (2) and (3) are essentially 
in agreement, as was to be expected. The nature 
of the approximations is such that even a value of 
a"-' 5 x 10"3 is compatible with them [this value 
is obtained from (2) when the thickness of the 
transition layer"-' lOa"-' 3 x 10" 7 em]. Calculation 
of the surface energy a at the velocity discontinui­
ties within the bulk helium II is essential to an 
understanding of the peculiarities arising for 
velocities greater than the critical velocity v , 
and, in particular, for rotation of helium in a c 

beaker 4 •5 • As was pointed out long ago by 
Landau, the formula v ""ya /p, d, where dis the c s 
width of the slit (or capillary) through which 
helium II flows, may be derived on dimensional 
grounds. 

If we consider Eq. (2), it becomes clear that the 
formula v "-' ( 1i I m ) · 11 /ad derived in reference c He v~ 

4 agrees in essence with the preceeding. It is not, 
perhaps, superfluous to point out that an analogous 
result is obtained by application of the funda­
mental criterion (l). We assume, actually, that 
within helium II there may form a region of volume 
V and surface area S, isolated from the remainder of 
the liquid. Then p = Mu and dp) =% Mu2 +aS, 
where M = p V is the corresponding mass and u is 

s 
the velocity of motion of the region in the co-
ordinate system associated with the liquid. In this 
case, in accordance with Eq. (l) 

1Mu
2 l -2- + crS ,.2cr IS 

Vc= Mu min=VPs~v) (4) 
min 

where dis the width of the slit or capillary, so that 
(SIV)m 1· "'1/d. Here u . "'v ,· i.e., the region 

n m1n c 
formed (playing the role of the "elementary excita-
tion" of reference 3) is at rest relative to the 
capillary walls. The minimal energy f . = %Mu2 . 
+oS = 2aS. The relation (4), within the ii~its of ~h; 
very low accuracy achieved, agrees with experi-

7 . • b h ment ; m any event, 1t agrees etter t an the rela-
tion v rv-ft I mH d ( cf. reference 2 ). c e 

In view of all that has just been said, it now 
appears to us that the most natural explanation for 
the properties of the critical processes in helium is 
to be sought, neither through consideration of the 
quantum character of the excitations 2 ' 7 nor through 
investigation of the surface excitations 2 , but 
rather in the results of a study of the possibilities 
for formation of discontinuities 4 •5 . 

The principle reason for the present letter, how­
ever, is the wish to emphasize another circum­
stance --- the necessity for calculating the surface 
energy a' associated with the velocity discontinu­
ity in the vicinity of the boundary between the 
helium II and a solid wall. According to all of the 
data, as has been said, such a discontinuity must 
necessarily exist, and therefore, the existence of a 
surface energy a'·"' a is difficult to doubt. In order 
that the discontinuity should not leave the wall 
(which, apparently, is the case for v < vc ), it is 
necessary for the inequality a'< a to be fulfilled 
(a being the surface energy for a dis continuity 
within the bulk helium II)***. The value of a' 
may to a certain extent depend upon the material 
of the wall, which is of interest from the standpoint 
of the possibility, considered below, of determin­
ing the influence of the surface energy a' upon the 
flow of helium II. This influence should, first of 
all, manifest itself by the existence of a certain 
minimum energy a'S required for the setting in 
motion of a solid body of surface area S in helium 
II. It is obvious that a similar expenditure of energy should 
occur as well in the establishment of flow 
through slits and capillaries. Here, clearly, we are 
concerned with an effect analogous to that seen in 
the presence of so-called dry friction between solid 
surfaces. The situation is more complicated in the 
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case of non-steady motion, since the disappearance 
of the surface energy a' (the same applies as well 
to a) cannot follow instantaneously upon the 
stopping of the body, and, apparently, metastable 
"discontinuities" can exist corresponding to zero 
velocity of relative motion between the wall and 
the helium II. The problem of the mechanism and 
the relaxation time T, and also of the nature of 
such "discontinuities" (these appear to be strata 
in which the W- function is perturbed relative to 
the corresponding lowest state), remains unclear 

Thus, as regards the influence of the energy a' 
upon nonsteady flow, it is difficult to make any 
but purely qualitatiye statements. For example, in 
determining the viscosity of helium II from the 
damping of the oscillations of a disk, this damping 
may for v < vc be explained partially by the forma­
tion of discontinuitiet3 at the surface of the disk. 
Here, in the quasistationary case, an energy 4a'S 
must be expended on the formation of discontinuities 
during the period e of the oscillations, s being the 
surface !lrea of the disk. Actually, however, in 
th . 8 9 h d . di e expenments ' t e ampmg correspon ng to 
a"-' 10- 2 is 4 to 5 orders of magnitude smaller 
than the indicated quasistationary value, which 
demonstrates that the inequality T» 0 "-' 10 sec is 
fulfilled. Nevertheless, it is not impossible that 
the contribution to the damping associated with the 
formation of discontinuities is substantial, and 
that with it is to be connected the disparity between 
the results of the experiments 8 ' 9 with oscillating 
disks and the measurements of the viscosity from 
the moment developed in rotating two coaxial 
cylinders relative to one another1 0 (in the latter 
case the process is stationary, and the damping 
must be due solely to the viscosity); in reference 
10 lower values are obtained for the damping at 
a low temperature, than in references 8 and 9, which 
accords with what has been said. The effect of 
the discontinuities may also be responsible for 
the peculia~ities i~ the damping of a disk at large 
amplitudes · In vutue of what has been stated, 
it seems to us that discontinuites in the flow 
velocity of helium II in the vicinity of walls de­
serve close attention. 

The author is obliged to Academician L. D. 
Landau and to Professor E. M. Lifshitz for their 
discussion of this problem. 

"' At the same time, the hypothesis of the possible 
existence of velocity discontinuities within the bulk 
helium II becomes· especially likely when it is considered 
that such discontinuities are known to exist in the 
vicinity of the wall. 

*"' We note that in the theory of superconductivity6 the 
surface energy an; at the boundary between the super­
conductirtg and normal phases can be successfully 
evaluated from "Similar considerations. Thus, assuming 
that the thickness of the transition layer between the 
phases 80; K ( cf reference 6 ), we obtain 

"tt2n5 (1)0 fx) H~mao 
O'ns ,..._ ,......, --- • 

2m ( ao I X ) 2 27t'..c 

which agrees with more exact calculations 6 (for the 
symbols, reference 6, noting that ns = mc 2! 47Te 2 a~ 

2 ( 2 2 2) 2 ;:,4) and K = 2e /71 c Hkm u0 • 

"'"'"' If a' and a depend on v [for example, if a' 
=a'(v -+ 0) + bv2J, then, in8 principle, it is possible s s 
for critical processes to develop, in conjunction with 
the fact that for v > v , a'> a. We note further that 

- c -
"if we set a= ccu2 ( cf. reference 4 ), then vc = 0. This 

circumstance, together with a number of others, indi­
cates that (provided that all of the ideas under con-, 
sideration are correct) the surface energies a and a 
tend to a limit different from zero as V8 -+ 0. ~ 
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L ANDAU and Lifshitz have shown 1 that in the 
rotation of a vessel containing He II, the 

normal part of the helium rotates as a whole, while 


