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A simple derivation is carried out of the equations proposed by Schwinger 1. The resultant 
equations are discussed and renormalization is obtained in the original integral equations*. 

INTRODUCTION 

I N connection with the inapplicability of the 
usual excitation theory for large energies of 

interacting particles, and also for the calculation 
of the characteristic properties of the existing 
theories of quantum fields (the presence of infini­
ties, the asymptotic character of a series of ex­
citation theories, the asymptotic character of the 
Green's function for high momenta, etc.), the de­
velopment of more precise methods of solution of 
the quantum mechanical equations presents great 
interest. In this connection, equations of the form 
suggested by Schwinger possess fundamental inter­
est. Inasmuch as we want to solve these equations 
not only by the methods of ordinary excitation 
theory, it becomes essential to carry out there­
normalization (not according to the excitation 
theory) in the original equations. Moreover, even 
within the framework of ordinary excitation theory, 
it is of interest to obtain a system of equations 
which does not preserve the infinities. On the 
other hand, to clarify the physical meaning of 
quantities which enter into the equations, obtained 
by Schwinger from a variational principle, and to 
establish the boundary conditions which .must be 
imposed on the solutions of these equations, it is 
important to obtain these equations from the ordin­
ary scheme of the theory of quantum fields, with­
out resorting to a variational principle. Such a 
derivation of the desired equations is given in the 
present work, and the renormalization is carried 
out in the integral equations that are obtained. 

1. We consider a quantum mechanical system 
which is a generalization of the ordinary system. 
Let the Lagrangian L of the system consist of the 

* The renormalization was obtained by us in reference 
2; in the present paper, a more appropriate derivation of 
the renormalized system of equations is given. 

1 J, Schwinger, Proc. Nat. Acad. Sci. U. S. 37 452 
(1951) ' 

2 
E. S. Fradkin, J, Exper. Theoret. Phys. USSR 26 751 

(1954) ' 
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ordinary Lagrangian Lor and the Lagrangian of the 
interaction with external sources Lin. 

For definiteness, we consider the case of 
quantum electrodynamics (the results are simply 
carried over to the general case of quantum mech­
anical theory). The initial Lagrangian in this case 
has the form: 

Lor=- 1h [ql, jp. (- idp.- eAp.) ~ + m~J (Ia) 

+ 1/ 4 F~v- 1/ 4 {Fp.v, dp.Av- dvA'"} 

+Hermitian conjugate; 

where I is the external source of the photon field; 
TJ is the anti-commuta.ting external source of the 
spinor field; 

(I c) 

The Hamiltonian of the system can be written in 
the form 

H = Hor + Hm, {2) 

where Hin has the form 

Hln = -- ~ P/2 [ql'fl] + 1/ 2 [;j~] + lp.Ap.} d 3x. {3) 

Conditionally we write Hin in the form 

Hin = - ~ ~ 'IT! (x, f) fn (x, t) d 3 x, {4) 
n n 

where fu.... is the source of an nth type field 
{Jp! 7], TJ ). 

ln the Heisenberg representation, where the 
wave function of the system is independent of 
time,'¥ (t) = const, the equations of motion for the 
operators of the field have the form 

IP. (- idp.- eAp.) ~ + m~ ='I); {S) 
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where 

- D Af'- + dpdvAv = 1'~'- + }~'-; 
(oA"' 1 ax'")=~= o, 

(6) 

(7) 

(8) 

We transform to a new representation, where the 
operators of the field do not depend on the external 
sources (analogous to the representation of the 
interaction in external interaction) and have the 
form 

If'(- idu.- eA"')~ + m~ = 0; 

- D A'"+ af-'aAv =]"'. 

(9) 

(lO) 

The wave function in the new representation 
changes with time and can be written in the form: 

<I> = S (t, - oo) 1f'0 , (ll) 

where '1'0 is the value of the wave function for 
t = - oo, and S satisfies the equation 

. aS (t, -co) _ H-inS (t _ ) (12) 
t at - , oo . 

We construct the matrix S( tl' t 2 ) 

s (t, t') = s (t, -- 00) s-l (t', - 00 ). (13) 
-

In accordance with Eqs. {12) and (13), we get the 
equation for S ( t 1 , t 2 ) in integral form: 

t 

S (t, t') = 1 - i ~ Hin (t1) S (t1 , -t') dt1 
(14) 

t' 
t 

= 1 +i~~;tn(tl, xl)fn(xl, t 1)S(t1 , t')d4x 1 • 

t• 

We take the functional derivative of both parts of 
Eq. (14) with respect to any external source fn (g) 
at the point .;, first setting t' = - oo *, 

8S(t, -co) 
8/(~) 

{(,~ ('")S('" _ )_1_ .(!Hi in(t) 'i'5S(t,-co) 
- ~1ttn <; ~o• oo ' l ~ I 8fn (~) 
- t, 

l 0, when t< ~0 • 

dt1 , when t > ~0 • (15) 

Multiplying Eq. (14) by i1Tfn (g 0 )5 (g0 ,- oo) on 

the left, and setting t' = .;, we get 

t 

iS (t, ~0) ;In (~0) S (~0 , - oo) 

=l::;tn(~)S(~0 , --oo) 

(16} 

+ i ~ Hin (tl) S (tl, ~) irttn (~0) S (~, - 00) dtl. 
!;, 

Comparing Eqs. (15) and (16), we obtain 

'i'5S(t,- co) 
'i)j (~) 

= {iS (t, ~o) ;In(~) S (~0 , - oo ), 
0, 

(17) 

But, as is well-known, an arbitrary operator ~ 
is connected with the corresponding operator in the 
Heisenberg representation by the relation 

s-1 (t, -oo)-:;,;S(t,-oo)=rt(t). (18) 

We get, finally, 

(19) 

= {iS (t, - 00) 1tfn (~), ~ / ~0 ; 

0, i <~o· 

It is easy to show that the following general 
formula exists for functional differentiation with 
respect to the external source fn (g): 

'i'5S(co)f.'(x) (20) 
3tn (~) 

= at:<~>[S(oo)S-1 (t)F(x)S(t)J 

=iS ( oo) P~~.1;, [ F (x) 1tf11 (~)]. 

where 

{ f (x) 1tf n (~). 

= ± 1tfn (~) F(x), 

if 

if 

Xo> ~o; 

Xo<~o· 

(21) 

The plus sign is used in Eq. (21) when the 
source f commutes with the operator F (x), and the 
minus sign in the opposite case [e. g., fn = 77, 
F(x) = 1/f]. 

* This method was applied in reference 3 for the case 
of a photon field, and Eq. (15) was obtained, although 
the S matrix in reference 3 is different from ours ( it 
considers interactions not only with external sources). 

3 R. Utiyma et al, Progr. in Theor. Phys. 81 (1953); 
K. Yamaraki, Progr. in Theor. Phys. 7, 449 (1952) 
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In particular, we get from Eqs. (19) and (20) the 

formulas 
aS(oo) . -
a'IJ (x) = - tS ( oo) 'f(x); (22) 

as (oo) 
a'IJ(x)aJ(x') = + S(oo) P(~ (x)A (x')); 

a~(oo) = iS(oo) ~ (x); 
a'Y) (X) 

as (oo) 0 
a'IJ (x) aJ (x') = - S ( oo )1 (•1 (x) A (x')); (23) 

as (oo) . A ( )· 
81 ~'- (x) = tS ( oo) P· x , 

as (oo) _ 
a'IJ (x) a'IJ (x') = S ( 00 ) P' (•?(x) y (x')); 

n a a n----S(oo) 
. aJ <xn) a~(x) 
t=l 

(24) 

n 

= (i)n S ( oo) p [fi A (xn) 'f (x) J etc. 

1=1 

With the aid of the formulas obtained for the 
function derivatives of S (oo), we can write down the 
operator equations (5) to (8) in compact form and 
get the same functional equation for the determina· 
tion of the operators S (oo), For this purpose we 
multiply Eqs. (5) - (8) on the left by iS (oo): from 
Eq. (23), we get 

[ ( . ;:, + . a ) J as (ool 1:' -tup. te~() -m ----
~'- x a'YJ (x) (25) 

= i'lj(x)S(oo); 

(- n as (oo) + _a _ _!!__ as (oo) ) 
t_j aJl'- ox!'- oxv aJV / (26) 

= + iJ~'-(x)S(oo) 

ie l a2 + -2- Tr 1 ~'- --=a'IJ=-(_x_) -a'IJ_t_x_+_<=) 

(27} 

The system of operator equations (25} - (27} 
must be solved for the following boundary condi· 
tions: 

[ as (oo). as (oo) ] 

a'IJ" (x, t) ' a'IJI3 (x', t) +1=0, '11=0 (28} 

[ as (oo) as (oo) J 
37J (x, t)' a'IJ (x', t) 

+1=0,1)=0 

== [ as (oo) as J _ O· 
3'1] (x, t) ' 3'1] (x', t) +- ' 

[ as (oo) a oS (oo) ] 

aJp. (x, t)' Tt a.rv (x', t) 1=0, 11'=0 (29} 

' ' ( ') = 01'-vO X -X ; 

[ as(oo) as 1 
aJIJ.(x,t)' 3'1J(x',t)L 

. [ as (oo) as ] 
= 311'- (x, t) ' a'IJ (x', t) - = 0; 

11r s· coo) s coo) w = 1. 

From Eqs.(22)- (24} it is easy to prove that if 
the matrix element of transition fromS (oo) is found 
in the vacuum state for t = - oo and for y = + oo, 

then we find the matrix elementsof the transitions 
in the successive functional differentiations with 
respect to the external sources. Therefore, instead 
of solving the operator equations (25} - (28), it 
suffices to solve the system of equations obtained 
from these equations for the matrix element of 
transition vacuum-vacuum*: 

(<D~(+ oo)<D0 (- oo)) (30) 

= ( 11"~(-- oo)S(oo)W0 (- oo)) = Z. 

From Eqs. (25} - (27) and (30), we obtain 

[IP.(-iaj).+ie ll~ )+m] ~z =i"fl(x)Z; (31) 
1'- a'YJ (x) 

( + ial'- + ie a~j).) ~~ 1 ~'- (31a} 

BZ .-+ m 81) =- t"fj (x) Z; 

az a a az . _ (32) 
- 0 aJ + dx ax V = t1 fL (x) Z 

P. P· v v 

+ 1. i_e T [ IPZ 1m- r"' 
a:.....a ~ lp. a1J(x)81J(X-<=) 

+ . . 32z ] 
8'1] (x- <=) 81J (x) ' 

* By functional differentiation with respect to ex­
ternal sources [see Eqs. (22) - (24) ], and by then set­
ting Yf =! = 0, we can obtain all the matrix elements for 
the effects, with consideration of all radiative cor­
rections, from Eq. (30), 
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(33) 

From Eqs. (30) - (33) it is easy to obtain the 
system of equations suggested by Schwinger 1. For 

this purpose, we consider that the matrix element of 
an arbitrary operator F (x) (in the notation o·f 
Schwinger) is 

F(x) = 'Y~S(=)F(x)'Yo (34) 
< ) 'Y~ S (=f'P"o 

where '!'0 describes the vacuum state. In view of 
this equation, Eqs. (31) - (34) take on the form 

1~'-(-iiJ~'-- e<Au.> + ie a; 1\<__g_> (35) 
• IJ. a'IJ (x) ' 

+ m < _!Z ) = i'tj (x); 
a'IJ (x) 

, . a \ a.z (36) 
( iiJ ~'- - e < A~ ) + te aJ ~'- ) < a'IJ (x) > I iJ. 

+ m< a'IJ~:) ) = - i~ (x); 

(37) 

_a_< az > = 0 
iJxp. aJ"' 

(38) 

with boundary conditions 

az az az < --> = < a't\(x) > = < V > = 0• 
a·~(X) 'I p. 

(38a) 

when 

1=0; 'tj= 0; 

and with too condition that 

a2z I 
a'IJ (x) a'IJ (x') 7)=0 1=0 ' 

a2z I 
aJ!J. (X) 'IJJV (X') 1=0;1)=0 

take on only positive frequencies x 0 >X~ and 
only negative frequencies for x 0 < x~· 

F~llowing Schwinger, we introduce the follow­
ing definitions: 

- i '81J ~x') < a:~x) > IT,=O =a (x, x') 

= i < P' (~ (x), ·~ (x') ); 

. 'IJ < 'IJZ D ( ') 
- t 'IJJI'-(x') 'IJJv (x) ) = 1'-v X, X 

= i [ P <AI'- (x) Av (x'))- (A"' (x)) < Av (x'))]. 

G and Dare the Green's functions of the electron 
and photon fields, respectively, From Eqs. (35) -
(38) we obtain the following system of equations! 

[1~'-(-iiJ,.- e <A"'>)+ ie1~'- a~J (39) 

X a (x, x') + ma(x, x') = a(x -x'); 

[ia~ - e <A~'- (x') > + ie 'IJJ:(x')] (40} 

x a (x, x') ~~- ma (x, x') 

= -o(x-x'); 

(a~"' a!v - Oo~'-v) <A~'- ) (41} · 

= 1~'- + lim Tr '"' [ ~ (a (x, x') +a (x' ,x))] ; 
x'-x 

(42) 

= Op.v o (x - X 1) 

+lim 81 a(x) Tr 1~'-[~ a (x, x') + a(x', x)]; 
~t''--+X V 1 

0 
dx Dl'-v = 0. 

v 

Here G ( x, x ') and D (x, x ') contain only posi­
tive frequtncies for x > xo' and only negative fre-

. f ' 0 li . h , quenc1es or x 0 < x 0 ·; at t e pomt w ere x 0 = x 0; 

these functions are defined as the half sum of the 
quantities for x0 ·= x0 ± E. 

We transform to the momentum representation, ob· 
taining 

(43) 

1 \ {' . = (27t)4<n-I) J exp tp1x1- zp2x2 - ... 

- ipnxn} B (pi~ P2' ···' Pn) d 4 p1 ... dnpn 

(B =A, a, 1, D). 

From Eqs. (39) - (43), we obtain the following 
system of equations 

(p + m) a (p, P1) (44) 

- e < ~A (p- k) >a (k,pl) d 4k 
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+ (2~)4 r..,.... llG (p + k, PI) d4k - 0 (p- p )· 
.. ~·~ I)J!).(k) - 1t 

k2 < Av- (k)) = 1,. (k) 
(45) 

(46) 

In what follows, it is advantageous to go over to 
another form of the equations obtained for the 
Green's function: 

(p + m)O(p, P1) (47) 

-e~ <A(p-k)>G(k, p1)d4 k 

+ ~ ~ (p, k) 0 (k, P1) d4k = o (p- P1); 

(k2ov-v- kv-kv) Av (k) (48) 

=lr-(k).+<2~4 Tr (~r,.O(p+k, p)d4p}; 

(k2o,.l. - k,.k;..) Dt..v (k, k1 ) = OIJ.vo (k- k1)- ~ Pv-a (k, p) Dav (p, k1) d 4p; 

where 

(49) 

From this set of equations we can, in particular, 
obtain an infinite set of coupled equations by 
means of successive differentiation of Eqs. (47) -
(52) with respect to A /l (k ). 

In the frequent case when the external sources 
are absent ( I = 0; ·TJ = 0 ), this sytem of coupled 
equations has the form 4 : 

{p + m -j- E(O)(p)} Q0 (p) = 1; 

{(k20P.P- kp.kp) + P~P (k)} D~v (k) = 1; 

n * 
X e2 {' "' . a<m> 

- (2n;)4 i ~ lv- LJ 
m, k=O 

( 
m n 

X r~~ ···P; p + k-~s;,, p-~s,, 
m+1 m+k r=1 r=l 

(53) 

(54) 

4 B. L. Ioffe, Compt. Rend., Acad. Sci., USSR 95, 761 
(1954) 

k -j- ~ S;,, S;m+l' ... ' S;m+k) X D(n-m-k) 
r=m+k+1 

X ( k + r=m~+l S;,, k, S;m+k+1' ... ' S;n) d4k; 

P. 

X (P + k, p- ~1 Sm, k, s, ... 'sm); 

(57) 

n 

= ~* 0~~~ .. ~'-im (P. p- ]s;,, S;1 ... S;m) 
m=O . 

( 
m 

(n-m-1) xrl'-i 1'-i p-] s;,, 
m+l n r=l 
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D~~~. ~'-n (p, p-~ Sr, S 1 o o o sn) 
r=1 

(58) 

m 

=- ~* DJ;m!.o!'-i (p, p- ~ S;r, S;1 o o o S;m) 
1 m n=1 

X p~~;;m+) o••~'-i (p - ~ S;r, p - ~ Sr, S;m+1 o o o S;n) D(o) (p-~ Sr) 
m 1 n r=1 r=1 r=1 . 

p(n) (p, p- ~ Sin• s1 o o o S;n) = 
vpp.l.,.f-Ln (59) 

= i (~:)4 T! {hv ~* Q~~ . .l"im (p + k, p + k-~1 Sr,, S;1 o o o S;m) 

m * 
where l f ( Si ) denotes that all the variables ir 

r=1 r 
take on values from r = 1 to r = m, but such that 

i1 -/- ir =/=- • o o =/=- imo 

In drawing up such a program of renormalization, 
we transform to_nev:_ variables G', D~V' r;, A~-, 
/ '. e'-·'-'-TJ'-·'·'-TJ' which are related to the 

fl.' ' 'f' ' ' 'f' ' 

former variables in the following way: 

0' = !!__ 0 

Z' 
2 

(60) 

The renormalization reduces to a choice of 
definite values for the constants Z 1 , Z 2 , Z 3 and 

to the substitution form and e the experimentally 
observed values for these quantities. This leads 
to the impositon of the following conditions on the 
solution of the renormalized equations in the ab­
sence of external sources (I = 0, 'f/ = 0 ). 

l) The Green's function for the electron must 
have a first order pole at the momentum p =-m , exp 
where m is the experimental value of the elec-exp 
tronic mass. The constant Z 2 must be so chosen 
that it would follow from the equation for G 'that 

1 h 

0' (p) -c)> h , when p __,.- m exp • (61) 
P + m e:xp 

2) The Green's function of the photon has a 
2 0 

pole for momentum k = 0. The constant z3 IS so 
chosen that it would follow from the equation for 
G 'that 

for (62) 

3) It follows from the relativistic invariance of 
the theory that for p = p0 =- mexp the quantity 

r II ( p 0 , p 0 , 0) is proportional to y II" 

We choose the constantZ 1 so that it would fol­
low from the equation for r that 

(63) 

For these conditions it is not difficult to prove 
that e, <= z- 1 z 2 z; e is equal to the experimental 
charge e 1. Actually, let us consider any ex-exp 
periment with whose help the value of the electric 
charge is determined (for example, the scattering 
of electrons of small momenta). This process is 
described, to a first approximation, by the excita­
tion theory diagram cited. The matrix element in 
this approximation can be written in the form 

e2 (~*(o).t.*(o)"' n<oJ.., <JJ(o}.h(O)) 
1 'f 2 I!'- IJ-V 'v I 1 'f 2 ° (64) 

Calculaion of the radiation corrections reduces 
to the replacement of the zeroth approximation 
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•1•0 D(O) b th 'I', Yp.• flll y evalues 

of these quantities with 
account taken of the radia• 
tion corrections to them, 
i.e., t/J, ['fl and D flll' re· 

spectively. However, as follows from Eqs. (60) -
(63), for such momenta of the electrons, when they 
are almost free (- p "'m exp) and quanta of low 
energy are exchanged ( the momentum of the pho­
tons k "' 0 ), consideration of the radiation correc· 

tions does not change the type of matrix element of 
the zeroth approximation, but only leads to are­
placing of e by e '= Zi 1 Z 2 Z ~ e in Eq. (64) in the exact 

matrix element e: Comparing the predictions of 
the theory with experiment, we determine the ex­
perimental value of the charge which appears in 
front of the brackets of the form (64) inthe exact 
matrix element, and this constant is e ~ as we have shown*. 

From Eqs. (47) - (52) and (60), we obtai~ the 
following system of equations: 

z2 (p + m) Ql (p, Pl)- eexp zl \(A (p- k)> 0' (k, PI) d 4k 

+ ~ ~' (p, k) 0' (k, PI) djk = 0 (p- PI); (65) 

Z 3 {k2op.v- kpkv} (A~ (k)) = J~ (k) + ~:~~ Z 1 Tr {~ 111-G' (p + k, p) d 4p}; 

Z 3 {k2op.t.- kp.kt..} D~, (k, k 2) + ~ P~;. (k, p) D~, (p, ki) d 4p = o (k- k1
) o",; 

(66) 

(67) 

The cons tantsZ 1 • Z 2 , Z 3 are determined from the 
conditions (61) - (63). To find them, it is appropri­
ate to write down the set (65) - (70) for the case 
'YJ = 0, J = 0: 

[z2 (p + m) + ~~ (p)] a~ (p) =I; (71) 

2 

"'' -e e:xp LJ (p) = (2rr)4 i r 
(73) 

' e2 
P~'-" (p) = (2rrj4i Z1 

(74) 

X Tr {~ r~'-0 1 (p + k) r,(p + k, k, p) a (k) d4k}; 

r~(P + k, p, k) (75) 

z "'(1) 
= liP.- Lip. (p + k, p, k) and so on, 

(6S) 

(69) 

(70) 

where >'<I>= a r/ 
...... !'- ----;-,-

ae e:xp <Ap.> for 1 = 0 . (76) 

From Eq. (71) we have 

Ql (p) = ' 1 I 

z2 (p + m) + r; (p) 
(77) 

When - "p "* m , expanding I' ( p) in a series in p 
exp 

+ m we get. 
exp 

0 1 (P)I-p-.m e:xp (78) 

* It is a reflection of this fact that in the renormal­
ized equations (see below) for the almost free elec­
trons (- p"' mexp) in the interaction with low energy 

quanta ( momentum k"' 0 ), there is no radiation cor­
rection. As a coupling constant in these equations, we 
have not e but e '; to which, consequently, it is neces­
sary to add the value of the experimental charge. 
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On the other hand, in accord with Eq. (61) this 
same quantity must equal 1/ ( p + mexp ), whence 
we obtain 

~~ (pO), 
m = m e:xp - ----z;-· (79) 

Analogously, it follows from Eqs. (62) and (72) 
that* 

1 iJ2p (kO) I z =1-- 1'-1'-
3 2 0 0 ok.okv k'=O· 

iJPI'-1'- (kO) I 
=1- iJk02 

( ) (k')'=O 

(80) 

Here we have considered the circumstance that l) 
P !LV ( k 0 ) is equal to zero (the proper mass of the 

photon) from the gradient in variance of the theory; 
2) from the law of conservation of the Dirac cur­
rent and the gradient invariance, P11v(k) = B (k 2) 

x ( k 2o !LV - k11 "v), where B ( k 2 ) is some function of 

the square of the momentum and therefore the first 
term of the expansion in powers of k is equal to 
zero for k = 0. 

Finally, from Eqs. {75) and (63), we get 

Zlll'- =II'-+ ~~1) (pO, po, 0); (8la) 

(8lb) 

Substituting Eqs. (79)- (81) in the infinite set 
of coupled equations (53) - (59), we. get the fol­
lowing set of renormalized coupled equations 
(we omit the primes): 

A (0) 
[p + me:xp + sl (p)] a (p) = 1; (82) 

r<o) ( ~- P + k, p, k) = Tl'- (86) 

* In Eq. (78) the s.ummation is not carried out over the 
repeated indices 11· 

- s(l) (p + k, p, k) + 8 (1) (po, po, 0); 

n 

s~~!··l'-n ( p, p- ~ S;n, sl ... sn) (87) 
m=l 

2 n 

=-<~~~:z~~~l'- ~*a•(p+k,p+k 
m,k=O 

m n 

"""~'-im+k(p + k-~ Sir• p-] Sir' 
r=l r=O 

n 

k + ] 8ir• 8im+I · · · S;m+h) X D~~-m-k) 
r=m+k+l 

n 

X ( k + ~ Sir,k, Sim+k+I . .. Sin) d 4k; 
r=m+n+I 

n 

f~~~• .. ·~'-n (P + k, p- ~ Sm, k, S1 •• • sn) (88) 
m=l 

n 

] Sm, k, S1 ••• Sn) + s{l) (po, po, 0); 
m=I 

n 

G~7! .. un (p, P- ~ Sr, S1 •.• sn) (89) 
r=l 

n n 

= ]* G~~!··~'-im(p, p - ~ S;r, S;, ... Sim) 
m=O T=l 

m 

=- ~* DPi,···~'-im (P> p- ~ Sir• S;, .. • S;m) 
T=l 



156 E. S. FRADKIN 

n 

p~~~····fln (P. p- ~ Sin• sl ... sn) (91) 

m=l 

2 n 

=- (~:'):1 Z1Sp { hp ~*a (P + k, 
m,h=O 

m 

p + k- ~Sir' Si, ••• Sin) 
r=l 

n n 

k + ~ Sir• p- ~ Sr, Sin+I" • ·Sin) 

r=m+h+1 r=1 

n 

+ ~ Sir' k, Sim+h+1 • •• Sin) d4k}. 
r=m+h+1 

From Eqs. (81)- (91), we obtain the following 
equation for Z 1 * 

e"" 
Z-1 1 I~-

1 = T 4 (21t)4 i 
(92) 

X ~1p.Tp[a(o)(p+k)rp(p0 -f--k;p0 -l-k,0) 

X a<o) (Po+ k_o) re (pO + k, po, k)D~~ (k) 

+ ao (pO + k) 
X r~~ (p0 + k, p0 , k, O)D~~ (k)] d 4k. 

Substituting the quantities Z 1 , Z 2 , Z 3 in Eqs. {65) · 

(70), we obtain the set of renormalized equations 
produced in reference 2. 

For the effective exclusion of overlapping in­
finities of z 1' it is necessary to express r p! 

ac-1/ ap and av- 1/ ak by the corresponding 
1L IL 

(unci ted) graph (the role of the cited graphs is 
that they reduce the y which enter in the uncited 

IL 
graph to I' ) ; the very automaticity also effectively 

IL 
leads to the exclusion of the overlapping infini-
ties. In this case we introduce the following 
quantities*: 

e2 a 
Kp.t. (p, p- k, k) =- (21tJ•i apfl [a (p) r, (p,- k) D.~. (k)] (94) 

+ <2:~.i ~[a (p} rp (p, -k1) a (P + k1) r. (p + k1, k) +a (p) rW (p, k,-k1)l 

X D,t. (k) l(u.p (p + k 1 - k, kv p- k); 

a 
Y~.p. (p + k, k) = Fk [a (p + k) r~. (p + k, k}] (95) 

"· 
-~[a (P + k} rp (P + k, -k1) a (p + k + k1) r. (P + k + k1o k} 

+a (P + k) r~~> (p + k, k, -kl)J D.~. (k) Y~.fl (k1 + p, k1) d 4k1. 

The set of renormalized equations then takes the 
following form: (96) 

aa-I (P) r 
----ap = '~'- +.) {r~.(p, -k)K~.p.(p + k, k, p) 

fJ-

* Formally, in the brackets in Eq. (92), we must 
still add one term c0 ('p0 + 'k) X r ~ (po + k, p 0. k) 

X D ~~ ( k, k, 0); however, as was shown in the Ap­

pendix, this term is equal to zero. 

(97) 

* Here and below the symbol I denotes that tl>.e given 
quantity is taken for the presence of external p'noton 
sources; if this symbol is absent, this means that I =0. 
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r<J> < ) ~ ~'- P1> Pz, Ps = 'YP.0 (PI- Pz- Ps) 

-. ~ {rf> (pis, -s~) R(J) (s, siiPz, Ps)· 

-f;'.(po, s, -Sz)Rp."A(s, s1IPz, O)}d4sd4s1; 

1 ,. 
Tip. (k) ~ 3' Tr {~ r'A (p, -k) 

)( Y'Ap. (p + k, k) d 4p}; 

where 

kz = 0 pz = m2 . 
0 ' 0 ·exp 

Here G" 1(p) and D" 1(k) satisfy the following 
boundary conditions: 

(98) 

(99) 

(Po- m) a (p0 ) = I, k~D (k~) = I. (101) 

Choosing the set of equations (73) - (76) along un­
cited graphs ( of the same order in charge) for 
I'll' Hf.L' CJG" 1 (p)/ CJpp.we obtain a compl~te set of 

renormalized equations. 

APPENDIX 

a) By way of an example of reduction with func­
tional derivatives, we consider the sol uti on of the 
set of Eqs. (25), (26) in the absence of interaction. 
Averaging these equations over all states and 
transforming to the momentum representation, we 
get 

A il(S(=l> . 
(p+m) i>·~(p) =t"tj(p)(S(oo)); (A1) 

il(S(=) > A .-

8'1)(p) (p + m) = -t"fi(P) ( S(oo) ); 

D a < ~j = l > = if~'- < S ( oo) >. 
P· 

The boundary conditions for ] = 0, 'fJ = 0 have the 
form 

il < S (m)) 
= i < ~ (p) ); 

il'Yl (p) (A2) 

il < s (=) > = - i < ~ (p) ); 
il'Y) (p) 

a< s C=l > _ . <A "( ) ) ill -l p. p . p. 

It follows from Eqs. (A1) and (A2) that 

( S ( oo)) = exp [ i ~ {:;;- (p) P ~ m "fl (p) (A3) 

1 1 + 2 1~'- (p) p2J~'-(p) +lp.(p)(Ap.(p)) 

+ < o/(p) >"'I (p) +"'I (p) < ~ (p)) }d4p]. 

In particular, when an average is taken over the 
vacuum-vacuum states, in accordance with Eq. 
(38a) we get 

('¥~, S ( oo) '¥0) = exp [ i ~ {:;;- (p) P ~ m "'I (p) (A4) 

+ !__Jp. (p) _1 Jp. (p)}d4p]. 
2 p2 

Finding a solution for S does not present much dif­
ficulty, even in the case of the presence of inter­
action. The solution is carried out by means of the 
tlEory of excitation, assuming a solution in a 
power series in the charge. In this case, Eq. (A4) 
plays the role of the zeroth approximation. 

b) The Theory of Ferry. In terms of the func· 
tional derivatives with respect to <Ap.>, the 
theorem of Ferry can be formulated in the following 
manner: in the absence of external sources 
(] = 0, 'fJ = 0 ), the odd functional derivatives with 
respect to < Ap. >from the Green's function of the 
photons D p.v are equal to zero. In fact, taking into 

account the charge symmetry of the theory, as is 
not difficult to show, the polarization operator 
Pvp.I see Eq. (51)]can be written in the form: 

Pp.v (p, k1) (AS) 

[a(p+ k, k) 

-0 (p + k, k)]} d 4p. 

where G is the Green's fJtnction of the charge­
coupled equation. Here G is defined by an equa­
tion analogous to the equation for G [see Eq. (47)] 
only with this difference, that the charges e are 
taken with opposite sign. If we take the solution 
for Gin the form of a functional series in<Ap.>: 

co 

a (p, k) = ~ ~ ena~~: .. P·n (p, k, S1 ... Sn) (A6) 
n=O 

)( <. Ap. (s1)) ••• < Al'-n (sn)) d4s1 .•• d 4sn, 

then the solution for G (p, k) will have the form 
co 

0 (p, k) = ~ ~(-eta~~: .. !Jon (p, k, S1. ·. Sn) (A7) 
n=O 
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From Eqs. (A5), (A6) and (A7) (and taking into 
account that for I = 0, 7] = 0 ), we find that the odd 
functional derivatives of Pp.11 with respect to <AIL> 

are equal to zero for I = 0. 

Translated by R. T. Beyer 
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