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equations are invariant under different kinds of 
~nor transformations. In connection with this, in 
each case different tensors are considered primary. 
This difference is closely connected with the fact 
that, in the earlier work: 2, 7t is considered a pseudo
scalar, not merely a scalar, as in Dirac theory, and 
that the operators of four-"momentum" have en
tirely different forms. 

The different character of the two systems of 
differential equations is especially explicit in the 
transition to the nonrelativistic limit. · From the 
point of view of the earlier work, we deal only 
with one real spinor, tjJ (I)" It is very character
istic that the current vector used in nonrelati vis tic 
quantum mechanics turns out to be not part of a 

vector, but of a tensor. Its components are propor
tioml to r<!~ [see reference 1, Eq. (54) and 

Zaitsev 14, Eq. (59)]. 
As for the Dirac equation, in the transition to the 

equations of nonrelativistic mechanics, the situa-

tirn is entirely different. In the nonrelativistic 
limit, tjJ is still expressed in terms of two real 
spinors t/J(l) and t/1( 2). The components of the 
current vector are found from the components of 
P(+) after making use of the Dirac equation and 
eliminating some of the terms (see Pauli 5 ) 

14 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25 
653 (1953) ' 
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The quantum statistics of systems with a variable number of non-interacting particles is 
generalized to the case of an aggregate of oppositely charged particles, which obey the law 
of charge conservation. Formulas which differ from the corresponding formulas of ordinary 
quantum statistics are derived for the total number of particles and the total energy. The 
results obtained are applied to the theory of multiple production of mesons. The following 
questions are studied: the dependence of the energy on the relative proportions of neutral 
and charged mesons, the formation of nucleon-antinucleon pairs, and the relation between 
the yield and the primary energy. The theory is compared with the available experimental 
data. 

l. INTRODUCTION 

J N the statistical treatment of the phenomenon of 
multiple production of particles at high energies, 

proposed by Fermi 1, the total number of particles, 
the total energy of the system, and also the relation 
between the numbers of particles of different sorts 
in the "thermpdynamic" approximation are calcula
ted by the usual quantum statistical formulas for 
an ideal Bose or Fermi gas with a variable number 
of particles. However, in this case, it is more 
appropriate to use formulas which take into account 
the conservation of charge(electronic, nuclear, etc). 
This is particularly important when we consider 
processes with a low yield. Thus, after general
izing ordinary quantum statistics to the case of 

1 E. Fermi, Elementary Particles, New Haven, 1951 

charge-co'nserving systems, a more detailed 
examination of processes of multiple production in 
the framework of the "thermodynamic" approxima
tion is possible. 

We make this generalization in the present paper, 
and as a result obtain new formulas for the total 
number of particles and the total energy, which we 
relate to the corresponding formulas of ordinary 
statistics. The results obtained are used to 
explain several matters pertaining to the theory of 
multiple production of particles. 

2. CALCULATION OF THE PARTITION FUNCTION, 
THE AVERAGE NUMBER OF PARTICLES, 

AND THE AVERAGE ENERGY 
OF CHARGE CONSERVING 

SYSTEMS 

We shall consider an ideal gas, consisting of 
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like but oppositely charged particles. The number 
of positive and negative particles can change as a 
result of pair production, but the difference between 
n +, the number of positive particles, and n-, the 
number of negative particles, i.e., the total charge 
v of the system, remains constant as a result of 
charge conservation 

v = n+ - n- = con st. (l) 

If the system has non-degenerate energy levels E k• 
then, designating by n; and n k the corresponding 
occupation numbers, we can write the partition 
function of the system in the form 2 

Z~=~~··· 
nt ni 
n~ n; li q:t +nh3 [ V.:~~ (nt - n;) 1 ' (2) 

where qk"" e-Ek 18, El = kT, and o[a,b] is the 
Kronecker symbol 

o [a, b] = { 
1, 

0, 
if 

if 

a=b. 

a=/= b. 

(3) 

The product fi and the summation ] extend 
k P. + 

over all k from 1 to oo; the summation over n k and 
nk extends from 0 to oo in the case of Bose 
statistics, and from 0 to 1 in the case of Fermi 
statistics. 

As is well-known, the Kronecker symbol can be 
represented in the form 

21t 

o [a, b) = 2~ ~ e-i(a-b)"' drp. 
0 

(4) 

In this way the partition function can be written 
as the following integral: 

21t 

Z = 2~ ~ e-iv"' ~ ~ .. 
o nini 

n~n;-

2 M. A. Leontovich, Statistical Physics, GTTI, 
Moscow, 1944 

(5) 

The sums in the integrand are easily calculated 
for both Bose and Fermi statistics. Indeed 

(6) 

Here, as in what follows, the upper sign ( + in the 
example given) applies to the case of Fermi 
statistics, and the lower sign (-in the example 
given) to the case of Bose statistics. 

Using Eq. (6), we can write the partition 
function (5) in the form 

where 

<P(rp) = ± ~ ln(1 ± q~~.ei"') 
k 

+ ] In (1 + qk e-i"'). ,, 
Having determined Z, we can calculate the 
average occupation numbers by the well-known 
formula 

(7) 

(7 ') 

·- - - iJ 
n11. = n; + n~ = qk iJqk (In Z). (8) 

Using Eqs. (7), (7'), and (8), we obtain 

(9) 

+ 1Eh. ) e-iv,+<I>('i') d'f. 
1 ± exp { e - i<p} 

Knowing Z and 1i k' we can calculate all the more 
important thermodynamic quantities. 

To calculate Z and n k' we must find an 
approximate expression for <I>( cp). If in the energy 
interval dE there are, on the average, dG(E) energy 
levels, <I> ( cp) can be approximated as 

00 

<P ( rp) = ± ~ [In ( 1 ± ex p {- : + itp}) (10) 

0 

+In (1 ± exp {-: -icp})]dG(E). 

Since the difference between the statistics we 
are considering and statistics with a fixed number 
of particles can be appreciable only for energies 
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large enough to produce pairs, we restrict our
selves to considering a relativistic gas. For an 
ideal relativistic gas, 

(ll) 

where Q is the volume in which the gas is 
contained, and b the number of possible states 
of different polarization. Substituting Eq. (ll) in 
Eq. (lO) and integrating, we obtain 

<I> (<p) = 

In view of the very rapid convergence of the 
series obtained, we take only its first term, and 
obtain as an approximation for <I> ( cp) the expression 

This approximation corresponds to the transition 
to Boltzmann statistics. 

Substituting Eq. (13) in Eq. (7), we obtain 
finally 2" 

1 r z = z.,. ) e-i''l'+P cos '~'d<p = !, (p), (14) 
0 

where I v(p) is the Bessel function of order v with 

imaginary argument. 
The average number of particles N and the 

average energy W of the system can be calculated 
by the formula 

00 co 

N = ~ n (E) dO (E), W = ~ En (E) dO (E), (15) 
0 0 

where n(E) is the average number of particles 
occupying levels with energy E, i.e., nk in the 
notation of Eq. (9). 

To calculate N, we substitute Eq. (9) in Eq. (15) 
use the expression (12), and integrate first over E, 
whence we obtain 

27t 00 

N = z!z ~ ~ (+Il-l co;akrp 
0 k=1 

(16) 

00 

X exp {-iv?+P ~ (+ll-lco~4k~}d'f. 
1<=1 

Just as in the calculation of Eq. (14), we restrict 
ourselves to the first terms of the series in the 
integrand, and obtain 

d! (o) N- P ' • (17) 
. - l,(P) ~· 

By analogous calculations, we also obtain an ex
pression for the average energy 

W=39N. (18) 

For conciseness, the formulas obtained above for 
an i~eal gas, consisting of positive and negative 
particles, will be hereafter referred to as the 
formulas of charge statistics. 

3. AN ANALYSIS OF THE FORMULAS OF 
CHARGE STATISTICS 

The dimensionless parameter p appearing in 
Eq. (17) has a simple physical interpretation. Ac
cording to Eq. (13} p is (except for a multiplier 
near unity) the average number of particles of 
relativistic gas with 2b internal degrees of freedom, 
calculated by the rules of the usual quantum 
statistics of systems with a variable number of 
particles. Therefore p is a parameter suitable for 
comparing formulas (17) and (18) of charge 
statistics with the corresponding formulas of the 
usual quantum statistics. 

From the theory of Bessel functions, we know 
that 

whence, by Eq. (17) 

I,+I (p) 
N = v + P ---r;fP) . (20) 

Thus N is the sum of two terms: v, the minimum 
number of particles for the given system, equal to 
the number of excess charges of whatever sign, 
and the mean number of produced particles 

/,+1 (p) ) () (21) 
Nt- = p I' ( p) = p 'V p . 

The quantity ,\v ( cp) denotes the ratio of the number 

of produced particles, calculated by charge 
statistics, to the number of particles produced 
according to the usual statistics. From the 
asymptotic behavior of the Bessel functions, it 

I v+ (p) 
follows that --1- -.1 as p-.oo. Thus A (p) -.1 for suf-

1 v(p) v 

ficiently high temperatures (but bounded values of 
v ), i.e., charge statistics reduces asymptotically 
to ordinary quantum statistics. On the other hand, 
for p--> 0, i.e., for low temperatures, A v(p)--> 0, 
and the formulas of charge statistics are 
considerably different from the formulas of ordinary 
statistics. 

The quantity ,\v (p) can be approximated with 
good accuracy (esp·ecially in regions of small p) by 
the expression 

(22) 
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= 1-exp{-pl2('1+ 1)}. 

From this formula it is clear that the number of 
particles produced at a given temperature {i.e., for 
given p) drops sharply as the charge v is increased, 
in other words, the charge v acts as a kind of 
anticatalyst in the process of particle production. 
For sufficiently large values of v, practically no 
particles are produced, the average number of 
particles remains constant, and charge statistics 
reduces to the ordinary statistics of systems with 
a constant number oi particles. 

Of particular interest is the case v = 0. Accord
ing to {22), for temperatures that are not too high 
(p < 1) 

),0 (p) = 1- e-P/2 "'PI 2. {23) 

Thus, for relativistic but not too high temperatures, 
the average number of charged particles produced 
is equal to p 2 /2, while the average number of 
neutral particles produced is equal to p/2. This 
leads to different temperature dependences for the 
average energy of radiation for a gas of neutral 
particles { W "' ®4) and for a gas of particles with 
some kind of charge {W "' ®7). 

4.APPLICATIONS TO THE FERMI THEORY OF 
MULTIPLE PRODU::TION OF MESONS AND 

NUCLEON·ANTINUCLEON PAIRS 

According to Fermi's hypothesis 1, IT-mesons 
and nucleon-antinucleon pairs are produced as a 
result of nucleon-nucleon collisions in some small 
volume n. The number of these particles is 
calculated by formulas valid for systems in thermo
dynamic equilibrium, using the expressions of 
ordinary quantum statistics, and not those of 
charge statistics, which, as we have seen, give 
quite different results for the case of low yjeld. 
For very large energies, the charge v is small 
compared to the number of particles produced, 
>.)p)-+ 1, and the formulas of charge statistics 
coincide with the formulas of ordinary statistics; 
thus, in this region of energies, the application of 
charge statistics in the framework of the Fermi 
hypothesis can not lead to new results. Signifi
cantly different results are obtained when charge 
statistics are applied in the low energy region, 
where the average number of particles produced is 
comparable to the charge v of the system. 

In Fermi's calculation of the average number of 
charged 17- mesons, the same formulas are used as 
in the calculation of the number of neutral mesons. 
However, the charged IT-mesons, unlike the 
neutral IT-mesons, obey charge statistics, and 

therefore to calculate their average number it is 
necessary to use the formulas {21) and {22), and not 
the formula N = p, valid only for .§-mesons. 
According to Eq. {22), we obt~in for the ratio of the 
number of neutral IT- mesons to the number of 
charged 11- mesons, produced as-a result of 
nucleon-nucleon collisions 

1 
OC= 

2 (1 - e P/2 ) ' 
{24) 

since the number of neutral"- mesons produced 
is equal to p /2. This rat?o coincides with that 
obtained by Fermi only for p-+ oo, For small values 
of p, it is clear that a. increases, which agrees 
with the experimental evidence3 • 4 * 

Because of the conservation of nuclear chargeS, 
it is also necessary to use the formulas of charge 
statistics to calculate the number of nucleons and 
antinucleons produced by nucleon-nucleon colli
sions. Thus, it follows from Eqs. (21) and {22) 
that the number of nucleons and antinucleons 
produced {within the framework of the Fermi 
hypothesis) by the collision of two nucleons, is 
given by the formula 

{25) 

and not by the formula N 2= p, used by Fermi. Ac
cording to Eq. (25), the number of nucleon-anti
nucleon pairs produced must be considerably smaller 
than that given by the Fermi formulas. This 
number becomes even smaller if the Fermi 
hyp~thesis is applied to the collisions of nucleons 
with nuclei, and it is assumed that the energy is 
distributed among several nucleons of the nucleus. 
If we neglect the production of particles in 
subsequent nucleon-nucleon and meson-nucleon 
collisions, the number of nucleons and antinucleons 
produced must be calculated by the formula 

N1+A = p [1- exp {-pI 2 (A+ 2)}], {26) 

where A is the number of colliding nucleons. In 
this case, the ratio of the number of nucleon
antinucleon pairs to the number of mesons can be 
expressed by the formula 

* In the case where the average number of particles 
produced N= 12p12 is small, a:nd we may consider that 
W = (p /2) + (p /2), a.= 1/ p. Eliminating p, we find 
that a.:; 1. 

3 A. G. Carlson, I. E. Hooper, and D. T. King, Phil. 
Mag. 41, 701 (1950) 

4 U. Camerini, P. H. Fowler, W. 0. Lock, and 
H. Muirhead, Phil Mag. 41, 413 (1950) 

5 E. P. Wigner, Proc. Nat. Acad. Sci. 38, 449 (1952) 
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~= 8 / 3 [1-exp{-p/2(A+2)}], (27) 

where p is taken for a gas of nucleons and 
antinucleons ( b = 4, since the polarization states 
of both the neutrons and protons are considered). 
For high energies and small A , this r~tio reduces 
to Fermi's, namely, {3=8/3, as was to be expected; 
however, for not too high energies and large A, it 
is considerably smaller. To calculate {3 in terms 
of the given primary energy W,' it suffices to 
know pas a function of W. For this, we must use 
Eq. (18), generalized to the case of the system 
considered, in analogy to the way we treat the 
case of nucleon-nucleon collisions below. 

We shall derive the dependence on the primary 
energy N + , the average number of charged mesons 
produced in the process of nucleon-nucleon col
lisions without charge exchange. We designate by 
y the total energy of the primary nucleon in the 
center of mass system, expressed in units of the 
nucleon rest mass, by y 0 = 2 y 2 - 1 the same 
energy in the laboratory system, and by Yk the 
energy, incident on the nucleon in the center of 
mass system and corresponding to the threshold 
of meson production. The medium energy region 
is pertinent to charge statistics, where y0 < 10 

and, correspondingly, y < 2.4. In this case, as 
experiment shows, the probability of producing 
nucleon-antinucleon pairs is very small, and we 
shall neglect it. The production of secondary 
particles will also be neglected. 

Using Eqs. (17) and (18), where v = 0, 

l-17 = 2(r-rn), 8 = O.lj''•r'" [see (13] 

we obtain 
• [ 1 J y-yh. 

p /, ).o(P) + 2 = 6.7 ~· 
(28) 

N;- = p).o (p). (29) 

Eliminating p from Eqs. (28) and (29) (using 
graphs) we get the dependence of the number of 
charge mesons produced on the primary energy. In 
the energy region considered, this dependence can 
be written 

(30) 
where k = 2.67. If we put yk= 1.1, Eq. (30) gives 
satisfactory agreement with experiment6. 

6 ]. G. Wilson editor, Progress in Cosmic Ray Physics, 
Vol. 1, New York, 1952 

Translated by R. Siverman 
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