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It is shown that Dirac's eq_uation for the electron can be considered a system of equations 
for two real spinors. Gauge mvariance of the equations will correspond to invariance under 
spinor transformations of the second kind. Consequently, in Dirac theory, it is not the 
components of t/J which should be considered as basic quantities, but rather the definite 
tensors which allow one to find the corresponding real spinors to within the spinor trans
formation. 

THE properties of tensors characterized by two 
-real spinors have been studied in a previous 

.paper 1. This allows one to investigate the Dirac 
equation from a new point of view. Although the 
question of which of the relativistically invariant 
electron equations is to he considered correct re
mains unanswered 2 , nevertheless such an investi
gationremains interesting in any case. For ex
ample, it will make possible the comparison of 
the Dirac equation with other types, thus allowing 
forahetter understanding of their specific proper
ties and differences. Since a great number of 
works have been devoted to the Dirac equation, 
comparison with themcanhelp in the investigation 
and solution of other equations.' On the other 
hand, the question of the meaning and nature of the 
Dirac equation may also he posed, which necessi
tates a thorough investigation of particular situa
tions connected with it*. 

l. First, let us note the well-known fact that 
if two systems of four-by-four matrices are given 
which satisfy the relations 

; (R"Rr. + Rr.R") = g~rr-. (l) 

(g~1 = g~2=g~=- g~4=1, g;r-=0 for oc=f=~), 

(2) 

then tmse matrices are equivalent, i.e., 

* For example, it necessitates consideration from a 
new ~int of view of the generalization of the Dirac 
equat10n to the case of the general theory of relativity. 
The author intends to devote a future paper to the in
vestigation of real spinors in curvilinear coordinates and 
pseudo-Riemanian spaces, which may lead to the solu
tion of this problem. 

1 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 29, 
166 (1955)· 

2 G. A. Zaitsev, j. Exper. Theoret. Phys. USSR 28, 
530 (1955); Soviet Phys. 1, 491 (1955) 
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(3) 

(TIE proof can he found, for example, in references 
3 to 5.) The R"', here, can of course have complex 
elerrents. 

Weemphasize particularly the meaning of 
transformations of the form of Eq. (3). In previous 
works6 • 7 we treated the quantities R"' as rna trices, 
corresponding to normalized basis vectors in four
dimensional pseudo-Euclidean space. Instead of 
the R"', hR_.wever, we can just as well use the 
matrices R "', since in the theory of matrix tensors 
the existence only of relations such as (l) is im
portant. Her.e we shall deal with a different law 
of correspondence: to the same basis vectors will 
correspond m,atrices of a different form, though the 
basis vectors themselves remain invariant. We 
n<te in particular that one must not confuse a trans
formation from one coordinate system to another 
with a transformation from one isomorphic corres
pondence between matrices and four-vectors to 
another. These are altogether different things, 
though in both cases the formulas for expressing 
the new R"' in terms of the old can have the same 
form [e.g., Eq. (3)]. 

2. In Dirac theory, m 0c/"'ft is considered a 
scalar. It follows from this that the equation 

Ra iJ 1 PdJ moe jh 
iJx"" 1i(w) = V , (w) = "J: 'r (w)J (4) 

3 H. Weyl, Gruppentheorie und Quantenmechp.nik, 2nd 
ed., Leipzig, 1931> 

4 B. L. Vander Waerden, Group Theoretical Methods 
in Quantum Mechanics 

5 W. Pauli, General Principles of Wave Mechanics 
6 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25, 

667 (1953) 

7 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 28, 
524 (1955); Soviet Phys. 1, 411 (1955) 
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(where the matrices Roc are real and t/1 (w) is a real 
spinor) is relativistically invariant. 

The Dirac equation for the electron in the pres
ence of an electromagnetic field can be written in 

the form ( iJ iJ ) 
i~ - + i~O(;k -k ~ (5) iJx4 iJx 

= mt ~ (x4 = ct, O(;k = O(;k) 

(see Pauli 5 , Sokolov 8 , etc. ). We will show that 
this reduces to two. equations of type (4) . To do 
this, let 

i~ = R = i?R2R3,- i~O(;k = Jfl; (6) 

(J = f?.1R.2R.3k4, k = 1,2,3), 

so that Eq. (5) becomes 

Ra. iJtjJ =moe h. 
axa. 1i 

(7) 

Transforming to real matrices Roc according to Eq. 
(3), and putting 

0~ = ~(1) + i~(2) (8) 

( t/1( 1 ) and t/1( 2 ) are column vectors of real ele

ments), we get 

Ra. __!__ (~(1) + i~(2)) = m:c j (~\1) + i~(2)). 
iJxa. TL 

(9) 

The matrices a.k and {3, and therefore 'j{k and 
iR\ are usually chosen Hermitian (see, for ex
ample, Pauli 9 ). If Rk and iR 4 are chosen accord
ing to Table 1 of reference 6, they will also be 
Hermitian. Making use of the fact that any matrix 
which commutes with all the Roc is a multiple of the 
unit matrix, and taking the Hermitian conjugate of 
both sides of Eq. (3), we get 00* = 0*0 = kE. 
Choosing an appropriate multiplier for 0, we get 

a·= o-1 (1o) 

Byway of an example of transition to real 
quantities, we consider the case of Rk = IB(O) Sk. 
R4 = /B (0), ] = 1; R = B (0), and use the usual 

forms, 

iO 0 0 1) I 0 0 0-i \ 
'0010 OOiO 

0(;1 = ! 0 1 0 0 ' 0(;2 = ( 0--i 0 0 ) ' 
\1 0 0 0 \ i 0 0 0 J 

(ll) 

8 A. A. Sokolov and D. D. Ivanenko, Quaritum Theory 
of Matter, GITTL, 1952 

9 W. Pauli, Relativistic Theory of Elementary 
Particl.es 

/0 0 1 0) (1 0 0 0) 0 00-1 0 1 0 0 
0(;3 =! 1 0 0 0 ' ~= 0 0-1 0 

\o-1 o o o o o-.1. 

It is easy then to prove that (12) 

-i 1-i 1 + i\ 1-i-1 

0--1-\ 1+i 1 - y8 --1--i 1 
-1 + i -1 

-i -1-i 1-i 
- i - 1-i -1 + i) ' 
-i 1-i -1- i 

a·= o-l 

( 
1+i 1-i-1+i-1-i\ 

1 -1+i 1+i 1+i-1+i 
= y8 \ 1 + i - 1 + i - 1 + i 1 + i) ' 

1- i 1 + i -1- i- 1 + i/ 

so that a.k = o- 1sko, i f3 = R = o- 1 B (O)O. 

We shall show that t/1(1) and 1/1(2) can be con
sidered real spinors such as those considered in 
reference 6. It is first necessary to show that if 
1/1(1) and t/1(2 ) transfonn like real spinors, and 1/1 
likea Dirac-theory spinor, then both sides of Eq. 
(8) transfonn in the same way. We shall make use, 
for tm proof, of the notation used by Sokolov 8 , so 
that 

(13~ 

We shall also borrow from that reference certain 
formulas involving 1/J. We first consider a spatial 
rotation. Rotation about the z-axis is character
ized in Dirac theory by the matrix cos ¢/2 
- i a 3 sin ¢/2 = cos ¢/2 - R R~ sin ¢/2 [here ¢ 
is tm angle of rotation about the z-axis in the posi
tive direction; we have used Eq. (18.11) on p. 96 of 
Sokolov 8 , taking into account Eq. (13)]. Real 
spinors transform in the same way (see the re
marks in reference 6 before Eq. (9); only /{oc must 
be changed to Roc). Analogous considerations hold 
true for Lorentz transformations [this follows from 
a comparison of Eqs. (9)-(13) of reference 6 with 
those on pp. 93-95 of reference 8 ]. From this it 
follows that under a four-dimensional rotation, both 
sides of Eq. (8) transfonn in the same way. This 
will be true also for four-dimensional reflections, 
if the law of reflection of space or time is defined 
according to one of the last two cases of Pauli 9 • 

In this way it becomes possible to consider t/1( 1 ) 

and tft2l as real spinors. 

Equation (9) can be broken up into two parts by 
equating the real and imaginary parts. Since 1/1 (1) 
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and tf( 2 ) do not transform into each other under 
any four-dimensional rotations or reflections, Eq. 
(9) determines two equations for two unrelated real 
spinors lf(l) and tf(2)' which can be written in the 
form 

" olji(w) moe ( ) 
R a.;;-= TN<w>, w = 1,2. 14 

In this way it is seen that the Dirac equation for 
elll{ty space is a combination of two independent 
equations containing separate real spinors, joined 
into one equation in a purely formal way. 

3. Llt us go on to a consideration of the general 
Dirac equation in the presence of an arbitrary ex
ternal electromagnetic field. As is well-known, 
this equation (or, more accurate! y, system of 
equations) can be written in the form 

R" (~ + i .!:..._A .. )~= moe J~. (15) 
ox" 1i.e ti 

Here e is the electronic charge and A=-¢. 
Taking into account Eqs. (3) and (8), we can re

write Eq. (15) in the form of a system of equations 
containing real spinors : 

.. oi)J(I) e " m0e (16) 
R ox" - ic A .. R ~<2> = T J~<I>• 

R" oi)J<2> e A R" moe 1 · ox" +tic "' ~< 1>= T o.Ji<2>· (17) 

This system of equations is clearly exactly equiva
lent to the Dirac equation. 

Equation (14) is a gauge invariant. Thus, Eqs. 
(16) aul (17) do not change their form under a 
spinor transfo~ation of the second kind ( tf(+) is 
replaced by e"'1tP(+)),so long as Aoc is replaced by 

-ftc a{ 
Aoc +-a oc • In Dirac theory, the only tensor com· 

e x 
ponents which are bilinear forms in t/J and ·'· 

(1) 'f'(2) 
that have physical meaning are those which are in-
variant under a spinor transformation of the second 
kind. Therefore, according to the preceding arti
cle1, we can explain this situation by noting that 
the initial primary quantities are nl, n2 and the 

components P(+)' N, and F(+)*· Making use of the 
general theory of tensors, we can derive relations 
between the quantities under consideration (see 

* Also, the components of the external electromag
netic field md tensors which are invariant under spinor 
transformation of the second type and expressed in 
terms of theA .. , are components of real spinors and their 
derivatives. 

reference l ), which, in particular, allow us to ex
press F(+) in terms of P(+)' N, U1 and 0 2. Some of 

these relations were ~reviously known (see, for 
example, DeBroglie 1 ), but their true meaning re
mained unclear. 

Equations developed in the pre ceding article 1, 
which allow one to find the real spinors t/J (l) and 
t/J (2) in terms of the primary quantities, can be 
written in the form 

and, consequently, 

F<+>~<+> =- 2i (Ql- 02l) ~<+>· (19) 

We can, of course, go back from tf(+) to t/J, which 
corresponds to a transformation to a new isoiiDrphic 
correspondence between matrices and tensors. Then, 
for example, inst~ad of Eq. (19), we have 0" 1If..+)O t/J 
=- 2i ( 0 1 - 0 2 I ) t/J, where 0"1 F(+)O is very 

simply expressed in terms of the matrices a.k, f3 
and the components of the tensor F(+)' 

In accordance with the above, the spinors which 
occur in the Dirac equation must be considered as 
secondary quantities. Therefore, we arrive at the 
conclusion that the Dirac equation must be con
sidered a system of equations for definite four
dimensional tensors. 

Wennst note that the notation wear~ using for 
writing the Dirac equatio~ only with matrices and 
real elements is not new. The same notation was 
used, for example, by Majorana11 (see also Pauli 9, 

Kramers 12 , Markov 13, etc. ). What is new is that 
the real spinors in this equation are considered 
secondary quantities, a system of parameters char
acterizing definite four-dimensional tensors. Ac
cordingly, in the Dirac equation written in any 
form, the components of t/J must be considered 
secondary quantities defined by certain four
dimensional tensors. 

4. In conclusion, we make some remarks con
cerning the difference between the Dirac equation 
and relativistically invariant differential equations 
of the first degree, containing two real spinors, 
which were discussed in reference 2. 

The basic difference lies in the fact that these 

10 Louis de Broglie, The Magnetic Electron 1936 
11 ' 

E. Majorana, Nuvo Cimento 14, 171 (1937) 
12 

H. A. Kramers, Proc. Arnst. Acad. Sci. 40 814 
(1937) , 

13 
M. A. Markov, J. Exper. Theoret. Phys. USSR 21 

761 (1951) ' 
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equations are invariant under different kinds of 
~nor transformations. In connection with this, in 
each case different tensors are considered primary. 
This difference is closely connected with the fact 
that, in the earlier work: 2, 7t is considered a pseudo
scalar, not merely a scalar, as in Dirac theory, and 
that the operators of four-"momentum" have en
tirely different forms. 

The different character of the two systems of 
differential equations is especially explicit in the 
transition to the nonrelativistic limit. · From the 
point of view of the earlier work, we deal only 
with one real spinor, tjJ (I)" It is very character
istic that the current vector used in nonrelati vis tic 
quantum mechanics turns out to be not part of a 

vector, but of a tensor. Its components are propor
tioml to r<!~ [see reference 1, Eq. (54) and 

Zaitsev 14, Eq. (59)]. 
As for the Dirac equation, in the transition to the 

equations of nonrelativistic mechanics, the situa-

tirn is entirely different. In the nonrelativistic 
limit, tjJ is still expressed in terms of two real 
spinors t/J(l) and t/1( 2). The components of the 
current vector are found from the components of 
P(+) after making use of the Dirac equation and 
eliminating some of the terms (see Pauli 5 ) 

14 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25 
653 (1953) ' 

Translated by E. J. Saletan 
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The quantum statistics of systems with a variable number of non-interacting particles is 
generalized to the case of an aggregate of oppositely charged particles, which obey the law 
of charge conservation. Formulas which differ from the corresponding formulas of ordinary 
quantum statistics are derived for the total number of particles and the total energy. The 
results obtained are applied to the theory of multiple production of mesons. The following 
questions are studied: the dependence of the energy on the relative proportions of neutral 
and charged mesons, the formation of nucleon-antinucleon pairs, and the relation between 
the yield and the primary energy. The theory is compared with the available experimental 
data. 

l. INTRODUCTION 

J N the statistical treatment of the phenomenon of 
multiple production of particles at high energies, 

proposed by Fermi 1, the total number of particles, 
the total energy of the system, and also the relation 
between the numbers of particles of different sorts 
in the "thermpdynamic" approximation are calcula
ted by the usual quantum statistical formulas for 
an ideal Bose or Fermi gas with a variable number 
of particles. However, in this case, it is more 
appropriate to use formulas which take into account 
the conservation of charge(electronic, nuclear, etc). 
This is particularly important when we consider 
processes with a low yield. Thus, after general
izing ordinary quantum statistics to the case of 

1 E. Fermi, Elementary Particles, New Haven, 1951 

charge-co'nserving systems, a more detailed 
examination of processes of multiple production in 
the framework of the "thermodynamic" approxima
tion is possible. 

We make this generalization in the present paper, 
and as a result obtain new formulas for the total 
number of particles and the total energy, which we 
relate to the corresponding formulas of ordinary 
statistics. The results obtained are used to 
explain several matters pertaining to the theory of 
multiple production of particles. 

2. CALCULATION OF THE PARTITION FUNCTION, 
THE AVERAGE NUMBER OF PARTICLES, 

AND THE AVERAGE ENERGY 
OF CHARGE CONSERVING 

SYSTEMS 

We shall consider an ideal gas, consisting of 


