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On the basis of the theory of the polar model of a metal in the form _developed by . 
Bogoliubov and Tiablikov, starting from the calculation of the magnetic and magnetoelastlc 
interaction of the electrons in the lattice, a step-by-step quantum mechanical theory of 
magnetostriction of hexagonal monocrystals is developed. The low temperature energy 
spectrum of the crystal is calculated, as well as the free energy and the temperature 
dependent of the constants of magnetostriction. 

INTRODUCTION 

THE quantum theory of ferromagnetism began 
its development after it had been estaliished 

by the researches of Frenkel' 1 and later by 
Heisenberg2 that the basic property of fem>mag­
nets--the presence of spontaneous magnetization--­
was explained by electrical exchange forces. The 
classical theory of magnetic-anisotropic proper­
ties of ferromagnets, which is fundamental to the 
theories of the curves of technical magnetization, 
is connected with the well-known researches of 
Akulov\ who also pointed out that the magnetic 
anisotro(ic properties of ferromagnets are de­
termined by the magnetic interaction of electron 
spins and orbits in the ferromagnetic crystal. 
The most important magneto-anisotropic proper­
ties of ferromagnets are the magnetic-energetic 
anistropy and magnetostriction. The quantum 
theory of these properties must be built on the 
basis of both exchange and magnetic interactions. 
If we can say that a sufficient number of re­
searches, both Soviet and foreign 4• 6, were devoted 
to the theory of·magnetic anisotropy, we must add 
that the quantum theory of magnetostriction has 
been only very slightly investigated. Only one 
research, due to Vonsovskii 7, is devoted to this 
problem. In this work, a quantum mechanical 

1 Ia. I. Frenkel', z. Phys. 49, 31 (1928) 
2 W. Heisenberg, Z. Phys. 49, 619 (1928) 
3 N. S. Akulov, Ferromagnetism, Moscow, 1939 
4 S. V. Vonsovskii, J, Exper. Theoret. Phys. USSR 8, 

1104 (1938) 
5 

J, Van-Vleck, Phys. Rev. 52, 1178 (1937); H. 
Brooks, Phys. Rev. 58, 909 (1940) 

6 S. V. Tiablikov, J, Exper. Theoret. Phys. USSR 20, 
661 (1950) 

7 S. V. Vonsovskii, J, Exper. Theoret. Phys. USSR 10, 
762 (1940) 

analysis is given, with the use of the method of 
energetic centers of gravity, of the phenomenon of 
magnetostriction in cubic crystals for the region of 
temperatures close to the Curie point. 

The aim of the present work was the step-by­
step forml'tion of a quantum mechanical theory of 
magnetostriction of ferromagnetic monocrystals 
with hexagonally symmetric lattices at low 
temperattres. The analysis is made on the basis 
of the theory of the polar model of a metal in the 
form developed by the researches of Bogoliubov 
and Tiablikov8 •9 , i.e., in the many electron scheme 
with the use of the method of approximate second 
quantization. 

MODEL OF THE SYSTEM AND THE INITIAL 
HAMILTONIAN 

We shall consider the crystalline lattice of hex­
agonal symmetry; let a "ferromagnetic" electron 
in the grWld state be located at each lattice site. 
We shall assume that the atoms in the lattice 
are placed sufficiently far apart that the overlap 
of the orbits of electrons at neighboring sites is 
not great. We shall assume that the integral of 
non-orthogonality of the atomic wave functions of 
the different nodes is small in comparison to 
unity. In the corresponding scheme of excitation, 
the wave function of the ground state is completely 
determined by the occupation number for all 
sites. It is also assumed that the ground level 
of the system is separated from the excited levels 
by an energy gap. We shall consider the introduc­
tion of a system of ferromagnetic electrons in this 
lattice ody in. the range of low tempemtures,where 

8 N. N. Bogoliubov and S. V. Tiablikov, J, Exper. 
Theoret. Phys. USSR 19, 251, 256 (1950) 

9 N. N. Bogoliubov, Lectures on Quantum Statistics, 
Kiev, 1949 ( in Ukrainian) 
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the excitation of the system can be regarded as 
weak. 

Let the system he located in an external mag­
netic field, sufficiently strong so that the crystal 
can be regarded as magnetized almost to saturation. 
We shall consider both exchange and magnetic 
interaction. In this case, as also in reference 6 
the Hamiltonian of the system in "equivalent" ' 
form can be written in terms of the spin operator 

:it= Go- ~p.H"S/- 1/2 (l) 
j,ct 

x ~ G "13 CJ1, /2) s;,sJ,, 
!" f, 
"• 13 

~ere Goc{3 ( {l' f2)is the tensor of the electron 
interaction, wliich, upon ignoring the magnetic 
interaction, degenerates into a scalar which repre­
sents the usual exchange integral; G .0 is a constant 
in the sense that it is independent ot the spin 
operators. 

The magnetic interaction of the electrons in the 
ferromagnetic lattice brings about a displacement 
of the atoms from their equilibrium positions, which 
brings about a spontaneous deformation of the lat­
tice. We shall consider that these displacements 
are not large, and that the deformations are homo­
geneous. Inasmuch as one can consider that 
Got.{3 (fl' { 2 ) = Got.{3({1 - { 2 ) in an actual lattice, 
we expand each of the components of the tensor 
Got.{3 in a series of small displacements relative to 
the equilibrium position, and restrict ourselves to 
terms which are linear in the components of the 
deformation tensor u ... Then (keeping the previous 

'1 
designation f for the positions of the sites in 
equilibrium), the equivalent Hamiltonian of the 
spontaneously deformed lattice can be written in 
the form 

or 

:it= Go-~ p.H·(Sj- 1/ 2 (2) 

X 

f, (t 

~ G"13 Cfu /2) s;.sJ, 
j,, j, 
ct, {3 

- 1/2 ~ ~ A~13 (j1, !2) s;,sJ,u;j 
!t, f, ij 

ct, 13 

1t = G- 1/2 ~ D"13 Cfu /2) Sj,SJ, (3) 
f.,j, 
ct, 13 

- ~ p.H·(Sj, D"f3(fHj2 ) = G"!3(/uf2) 
f, (t 

+ ~ U;iAfl (jl, /2), 
ij 

where A~f ( {1 • { 2 ) is the tensor of magnetic inter­

action, yot. is the direction cosine of the magnetic 
field. (Inasmuch as the tensor Got.{3 describes the 

magnetic interaction in generalized. form, the evi­
dent form of the dependence of A ~[3 on the com-

'1 
ponents G ot.{3 and their derivatives is not brought 

out here, and will not be made use of in what 
follows.) In this manner, the Hamiltonian of the 
system in the form (2) will appear as the initial 
Hamiltonian of our problem. 

The calculation of the terms of magnetic and 
magneto-elastic interaction permits the removal 
of exchange degeneracy even in the zeroth approxi­
mation. The parametric character of the dependence 
of the Hamiltonian (2) on the components of the 
deformation tensor makes possible the use of the 
general scheme of the method of finding the ground 
level and the energy spectrum that is described in 
the book of Bogoliubov9 • For this purpose, we ex­
press the Hamiltonian (3) by Fermi operators a1v 
making use of the well-known relations 

(4) 

S y ·c + + ) 1 = t af, ,,,a1, _,,, - a1. _,1,a1, ,1, , 

Sr + + 
1 = af, _.,,a1, -'/,- a1, •1,a1. ,1,, 

with the condition 
+ + 

af, -'J,af, _,,, + a1, ,1,a1, ,1, = 1. (5) 

The Hamiltonian takes the form 

(6) 

1/ ~ B (f f . , + + - 2 1• 2• v1, v2, v1, v2) a! .. a! .. a! ·a1 · .. , 2'3 •"• ,..,, 

+ ~·A (j, Yu v~) afv,afv,' 

(for the present, we omit the constant term G 0 ). 

The quantities B(fl' {2 • vl' v2 , vi; v~) and 
A ( {, v1 , vi ) will he completely determined as 

known functions of the components of the tensors 

G ot./3' A';/ uii and the field H. 
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DETERMINATION OF THE GROUND LEVEL AND THE 
ENERGY SPECTRUM 

The ground level of the system is found by a 
quasi-classical method, replacing the operators 
alii by the c-numbers eo (f, II) which are subject 

to the condition 
~B~ (f, v)B0 (f, v) = 1 (7) 

and which satisfy the equations 

We transform Eq. (6) to the operators a1w with the 
help of the function er,l (f, II): 

atv=~6.,(j,v)a1., (w=O.l), ., 
where the e (JJ ( {, II) are orthogonal to e0 ({, II) and 
satisfy the equations 

- ~B(fu /2, '~1• '~2• v~, v~) (9) 

X B~ (!2 , v2) B0 (/2 , v~) B., (/10 v~) 

+ ~A (fu 'lu '~2) B., Cfu '~2) = A., (fl) B., (/u vl). 

Introducing the operators bfw which obey the Bose 
statistics aproximately: 

(lO) 

The Hamiltonian (6) can be reduced, for the case 
of weak excitations, to a quadratic form relative 
to the operators b1w: 

§t = Eo + ~{/,.,(f) -/,o (/)} bt.,btw (ll) 

where 

X a:, (fl> v1) B~ (!2, v2) 6.,. (!2, v~) Bo Cfu v~ ), 

p Cfu /2, <Ul, <U2) 

The problem of finding the energy spectrum -re­
duces to the reduction of the Hamiltonian (ll) to 
diagonal form. For this, we transform Eq. (ll) ac­
cording to the formulas 

b11 = ~ {Ukf~k + v:~~~}, (13) 
k 

b~ = ~ {u:1~~ + .Vkf~k} , 

,where the gk are Bose operators and ukf and vkf 
are the eigenfunctions of the equations 

EkUnt. = ~ P(jl, /2) Vhf• 
f· 

+ ~ Q Cfu /2) Ukf• + At.Uhf,, 
j, 

- EkVkj, = ~ p* Cfu /2) Ukj. 
j, 

+ ~ Q" Cfu /2) Vkj. + At.Vkj, 
f· 

and satisfy the condition 
~ o o I 
4.J (UkjUk'f- VkjVJ,•t)= o(k, k) 

(14) 

(15) 
f 

[ E k is the eigenvalue of the s ys tern (14) ]. Making 
use of Eq. (13), setting up pair products of the 
operators b1 wand substituting in Eq. (11), we ob­

tain, keeping in mind the properties of gk' vkf' 

ukr 

fft = E0 - ~ EkV;JVkf + ~ E~~;~;!"~k· (16) 

The quantity -:I Ekvkf vkf can be regarded as a 
correction to the energy level E 0 ,for which reason we de­
noteitasM0. The quantity Ek is some function of 
the wave number which characterizes the spectrum 
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of elementary exci~ations. The eigenvalues of the 
operator .;t .;k = N k are known; they are the in­
tegers 0, l, 2, ... 

Thus, 

The energy of the system with the Hamiltonian in 
the form (17) can be interpreted as the energy of an 
ideal gas of quasi-particles (elementary excita­
tions), which obeys the Bose statistics; the 
quantity Ek will characterize the energy spectrum 

of the quasi-particles. The energy levels of the 
system will be determined by the collection of oc­
cupation numbers of the quasi-particles in the 
states Ek· In order to establish the dependence of 
the quantities ;').E 0 andEk (which are ofinterest 
to us) on the characteristics of the system, we 
make use of Eqs. (14), the solutions to which we 
shall seek in the form 

Ukf = ukeifk, Vkf = vheifk. (18) 

Substituting Eq. (18) in Eq. (14) and introducing 
the notation 

P(k) = ]P(fl- f2)e;u,-t.·..Jk, (19) 
f, 

Q (k) = ] Q (!1 _ j 2) eiU,-f,)k, 

t. 

we get 

[(Ek- A)- Q (k)] Un- P(k) Vk = 0, (20) 

p* (k) Uk- [(Ek +A)+ Q• (k)J Vk = 0. 

From the conditions of solvability of these equa­
tions, an expression is immediately obtained for 
E (k), if we keep in mind that Q(k) is a real 
quantity, 

In order to find ;').E 0 we must calculate vk1v*kf 

by virtue of Eq. (18) it is sufficient to find vi. 
From Eq. (20), eliminating uk and making use of 
the condition (15), we get 

!:l.E = - _!_ ~ I P (k) 12 (22) 
o 2 .t::JE,_+Q(k)+A 

To bypass the difficulties of solution of the sys­
tem of Eqs. (8) and (9), we take advantage of the 
procedure set forth by Tiablikov 6 • In finding the 
the ground level and the minimizing form of the 
function eo({, v) we can replace the components 

of the spin operator si by components of ordinary 

vectors u i· We put the relations which connect 
the components u,with the c-numbers eo (f, v), by 
analogy with Eq. (4), in the form 

crJ = &~ (f, - 1/2) Oo (j, 1/2) 

+ 0~ (f, 1/2) Oo (f, - l/2), 

OJ= i {0~ (/, 1/2) 

fJo(f, - 1/2)-0~(f, - 1/2)0o(/, 1/2), 

crj = 0~ (f, - l/2) Oo (f, - 1/2) 

(23) 

-6~(/, 1/2)6oCf, 1/2). 

Instead of Eq. (7) we will have the condition 

] ( cr/)2 = 1 (o: =X, y, z). (24) 

Keeping in ~ind the well-defined connection be­
tween u i and eo ( f, v ), we consider the quadratic 
form 

E = - 1/ 2 ] D aro (/1 , / 2 , uii) a;, a!, (25) 

- ]p.Hr!Xcrj 

and seek its minimum under the added condition (24). 
Consequently, the minimizing form of the value of 
the components u i can be determined from the 

system of 3 N equations 

- ~Dar,(/1 , / 2, Uij) crJ, -I. (/1) cr; = p.Hy11.. (26) 
f., r. 

We now find the expression for E0 • For this pur-

pose, we multiply each of the Eqs. (26) by the cor­
responding u; and add. As a result, we obtain 

£ 0 = 1/ 2 ] D (j_[l (/1 , / 2, Uii) a;, crJ. + ~> (/1). (27) 

The equation for the calculation of e0 (f, v) in 

terms of u; can be written in the form 

A0 (/1) 00 (/1 , v) =]A (/1) crj, (dcrjjiJO~ (j1 , v)J. (28) 
!1. 

We note that Eq. (9) for determining e1 (f, v)isob-

tained from Eq. (8) by the formal substitution of 

el (fl' vl) for eo (fl' vl) (here it is obvious that 
Ao .... A1 ). In the same way we get from Eq. (28) the 
equation for. e1 ( fl' v1 ). 

(29) 
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We solve Eqs. (28) and (29) by making use of the 
orthogonality of the functions eo (f, v), el(f, v); 
we obtain 

60 (f, _ 112) = V (1 + aj)/2, 60 (f, 1l2) (30) 

= ei<pf V (1- aj)l2, 

61 (/, - 112) = V (1- aj)l2, 61 (f, 1l2) (31) 

= ei('Pt+n> V 1 + aj)/2, 

A1 (/1) = -1,0 (/1) = A (H). 
It was shown earlier that the external magnetic 

field is sufficiently strong; moreover, we assume 
that because of the nearness of the system to. the 
state of magnetic saturation of the spin of all 
sites one can consider the spins parallel and 
therefore the componentsa;"are practically in-

dependent of the site number f. . 
We introduce sums over the lattice 

(32) 

For a hexagonal lattice (when the principal 
axis coincides with the axis OZ) the following 
assumptions can be made rt;lative to the com-

ponents of the tensors G rxf3 and A .rxP: 
'1 

(33) 

(34) then(o:. fJ),f:(ijHori=j and simultane­
A~P ,f: 0 usly ex.= {3; 

'J when (o:.fJ}=(ij) fori ,f:j, o:.,f:{J; 

the other components vanish. 
Introducing the abbreviating notation: 

_Go+ '- = x; Qa _Go = A; .. ~ = 'Yj; (35a) 
[LH 0 t-"u 

A~/ p.H = el> Ai I p.H = e2 , Ai I p.H 

= e3; A~ I p.H = e~, A: I p.H = e~; 

(35b) 

where 

Ae = A~ = ] u;i A'(,'\ (35c) 
ij 

we rewrite Eq. (26), taking into account the as­
sumptions on the independence of a; on f: 

(e1 - x) a1 + e~ a2 + e3°aa = -ru (36) 

e~ a1 + (e2 - x) a2 + e~ a3 = -r2 , 

e~ a1 + e~ a2 + (e3 + 'Yj- x) a3 =- Ia· 

According to Eq. (24), the ai are connected by 
the condition 

(37) 
i 

Because of the assumption on the strong fields, 
themagnitudesofTJ, Ei• £~can be considered 

small, and Eqs. (36) can be solved approximately 
under the condition (37). As a result, we obtain 
relatively simfle expressions for ai and A: 

01=~{11+ ~[r1e1 + l2e~+rasq}. (38) 

a2 = ~ {12 + ~ [ 11e~ + 12e2 + raef]}, 

Oa =X flJ{ra +X f lJ [rle: + l2~ + l8ea]}; 

A=- O,- 'tlH- Ar:- ~ (lioli• u;), (39) 

where 

nr~o j;, Uij) = (uuM~ + u22 ~~ (40) 

A -sa) 2 2 Al2 + Usa as Ia + Uu 12 1112 

Substituting in the formulas for P ( fi, [ 2 ) and 
Q( fl' [2 ) expressions for B(fi, h• vl' v2 , vi, v; ), 
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eo({, v) and el ({, v), we obtain 

i 
- Q U~of2) = 2 [Dn {fl> f2) + D22 {fl, fa)] (1 + a:) (41) 

+ Dsa {fl, f2) ( 1 -a:) - D12 {fl, fa) (1 -a:) sin 2 cp 

-} [Dn {fl, f2)- D22 (/1, f 2)] (1- a:) cos 2 cp 

-2 D1a {fl, f2) asV 1 -a~ sin rp - 2D2s {flf f 2) a8 V 1 -a: cos fjl; 

- P Cft, fa) = [ Dn Cf1, f2) - D22 {fl> f2)] {} ( 1-a:) cos 2~ - a3 sin 2~ } 

- 2iD12(/1, f 2 ) {} ( 1 +a~) sin 2rp- a3 cos 2rp} 

+} [2Das Cfl,f2)- D22 (fl,f2)-Dn (fttf2)] (1 -a:} 

+ [D13 (/1, f2) - iD2a (/I> fa)] e1'P {I - a3) V 1 - a~ 

- [Dis Cf1, f2) + iD2s (/1, f 2)] e-icp ( 1 + as) V 1 - a~, 

where 

COS rp = Y a1 

1-~ 
sin m = <rz t <rz 

r .r • rp = arc g - . 
r 1-a2 <rt 

(42) 

We now have arranged all the necessary data 
for finding the quantities E 0 , A E 0 and E k of 
interest to us. 

Making use of Eqs. (27) and (33) we get for E 
0 

N [ 1 A 2 Eo=- 2 Go+ 2u1a (44) 

+} e(j;, li• u,;) + 2 p.H] 
We introduce the Fourier decomposition 

Da~ (k) = ] D (/2 - / 1 ) e-1<1.-!t>" (45) 
(/,-ft)+O 

= a .. ~(k) + ~u,1Ail(k). 
1/ 

Inasmuch as we have made assumptions about low 
temperatures, we must limit ourselves to the ap­
proximation of small wave numbers 

a a~ (k) =a a~-} a a~P k 2 + Oa (k4), (46) 

3 

In such an assumption, it is of course understood 
that we limit ourselves to the approximation of 
nearest neighbCl'S and make a definite averaging 
over the angles in the space of the wave numbers. 

For maximum simplification of the tedious cal­
culations, we shall use approximate forms in place 
of Eqs. (21) and (22) : 

E,. = Q (k)- 21.., (47) 

!lEo = - : ~ I P (k)l2 
4 -'.J Ell. • (48) 

Multiplying on the right and the left. of the expres­
sion for Q ( fl' {2 ) in Eq. (41) by e-' (fk) and 
summing over{, we get Q(k). Expanding the com­
ponents 

Da~(k)=a .. ~(k)+ ~Ut;A~~(k) 

in a series, in accord with Eq. (46), and sub­
stituting in Q( k ), and also substituting for the 
ai their values from Eq. (38) [taking into account 
Eq. (35) ], we get 

E" = 2p.H -A (1 - 3T:) (49) 

+ ~ (Tt. 1'1• Ut;) + ~k2 • 
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The expression for {3 has a rather formidable ap­
pearance, but the first term is the greatest: 

1 -a- --2 
~=2[Gof2+Gof] + ... (50) 

It is not difficult to note that this quantity is pro­
portional to the exchange integral. To find M 0 , 

in accordance with Eq. (48), we must find IP(k) 12 • 

The quantity P (k) can be found in the same way 
as Q(k), from Eq. (42) for P(fl' f2 ). Inasmuch as 

P (k) is a complex quantity, we can write it in the 
form 

P(k) = Pr(k) + iP; (k). (51) 

In this same approximation of Eq. (46) we get 

I P(k) 12 = a0 - a2 k 2 + a4 k 4 , (52) 

where the largest term, which we need, is 
-2 -2 

ao = Pro+ P;o. (53) 

Denoting a certain limiting value of k by n 
( n =a number of the order of unity), we get, ap­
proximately, for the case of moderately strong 
fields (omitting terms which do not depend on the 
field) : 

!::.Eo= (54) 

16a;;,,. V2p.H-!::. (1 - 31a2) + ~ (1i> 1i• Uij). 

We note that term which corresponds to M 0 

in the expression for the magnetization ( M H), 
and which is obtained after differentiation accord­
ing to H, not being dependent on temperature, 
keeps a finite value even at absolute zero a'ld dis­
appears only in infinitely large fields. This con-

clusion is still further confirmed by the results 
obtained in the researches of references 6 and 10. 
However, the expression for MH is obtained much 
more precisely by virtue of the calculation of the 
magneto-elastic interaction (within the framework 
of the assumption on a single ferromagnetic elec­
tron per atom)*. 

An estimate of the quantity a 0 shows that a 0 

"' !l 2 and, inasmuch as ll is of the order of the 

* The problem of the magnetization of ferromagnetics 
in connection with a calculation of the magnetic inter­
action, touched upon here very superficially, requires 
special consideration and will be treated in another 
article. 

10 T. Holstein and H. Primakoff, Phys. Rev. 58, 
1098 (1940) 

first constant of magnetic anisotro~y (relative to 
one atom), i.e., of the order of lO- 6 - 10"17 erg 
or less, in the computation· of the free energy and 
magnetostriction, we will not consider the correc­
tion to the ground level, since its effect on the 
final results will be very slight in the accepted 
approximation. 

THE FREE ENERGY AND THE TEMPERATURE 
DEPENDENCE OF THE CONSTANTS OF 

MAGNETOSTRICTION 

All quantities which characterize the energy of 
a spontaneously deformed crystal have now been 
obtained. In order to go over to macroscopic 
quantities, we find the sum-over-states 

Z =Spur {e-.7Ci&} (& = kT). (55) 

In our case the Hamiltonian U has the form of 
Eq. (17); therefore, we obtain the following expres­
sion for the free energy in the usual way: 

'¥ = E0 + !::.E0 +&I: ln(l - e-Ekl~). (56) 

Making use of Eqs. (44) and (49) for E 0 and E k, 

we obtain, approximately, 

'¥ = - } :[Go+ !::.12a (57) 

+ ~ (1;, 1i• U;f) + 2 p.H] 

~ Vit (.& \ '/. { 2 !LH- !l} 
- 21t2 - 4- ~) exp- .& 

{ 3!ly2 + ~ (y., y ., u . . ) } 
X exp - a ,a. 1 1 11 

We are primarily interested in the character of 
the temperature dependence of the anisotropic and 
magneto-elastic terms of the free energy; ·there­
fore, we have specifically isolated in the second 
term of Eq. (57) the factor which contains the 
direction cosines of the vector of the magnetic 
field (at saturation, the direction of the field 
coincides with the direction of the magnetization). 

At temperatures differing only slightly from ab­
solute zero, the first term in Eq. (57) is the better 
approximation for the free energy. At high tempera­
tures, the second term of Eq. (57) also begins to 
play a role. The exponential factor 

at small values of the exponent can be expanded 
in a series. Inasmuch as the quantity ,;()'., )'., u. .) 

' I 'J 



QUANTUM THEORY OF MAGNETOSTRICTION 133 

is of the order of the magneto-elastic energy per 
atom, it is 3-4 orders of magnitude smaller than 11. 
Therefore, the possibility of decomposition is de­
termined by the condition 

& >d. (59) 

This condition determines the lower temperature 
limit of applicability of such a decomposition; 
carrying out the latter, we get for the free energy of 
anisotropy 

'I"a= (60) 

{NA 3Vml(&)•t, [ 2!LH-A]} 2 
- )2V - """"8T [3 exp - & Ia 

and for the free magneto-elastic energy 

'f M. y= - { 2: - ~~ (~ r• (61) 

X exp[- 2!LH.;A ]}e(li.li• Ut;) 

=J(&,HH(Iioli• Ui;). 

It is evident by direct comparison that Eq. (60) 
for the free energy of anisotropy virtually coin­
cides with the expression obtained earlier by 
Tiablikov6• 

From the properties of the tensor A ~~([1 , [ 2 ) for 

the hexagonal lattice, it follows that'' 

A~~ = A: , A~~ = A~~ , A~~ (62) 

Aaa Aaa A22 A2a A1a 
= u= 22= 33• 23= 13• 

Inserting these relations in Eq. (61), we obtain an 
expression, from whose consideration it is evident 
that it is analogous, in the character of its de-
pendence on y. and u . . , to the classical expression ' ,, 
for the magneto-e-lastic energy; hence, the 
quantities 

A':'I3N 
-iV-f(&,H) (63) 

will play the role of magneto-elastic coefficients. 
Up to the present time the dependence of the 

energetic quantities with which we have to deal on 
the u .. has been considered parametrically. In ,, 
order to obtain clear expressions for the magneto­
strictive constants, it is necessary to bring into 
consideration the elastic energy and to determine 
the equilibrium value of the components of the de­
formation tensor from the condition of minimum free 

energy. This is done in precisely the same way as 
in classical theory. A s a result we obtain for the 
magnetostrictive constants the expression 

xi= xf {1 - ~(..!_)''• (64) 
4N 1t{3 

[ 2!LH-A]} X exp - & • i = 1, 2, ... , 5, 

where, for example, 

o N [ (2 A3a An A22) A3a] (65) xl = V C1 u - 11 - u - C2 aa , 

o N [ A22 Au c.A33aa]. X2 = V Ca 11 - C4 u - u 

The coefficients c1 depend on the elastic con­

stants of the crystal~ne lattice. 
The quantities A~. in the complete theory de-

'' pend on the matrix elements of the operators of 
magneto-elastic interaction, and are computed with 
the help of the corresponding wave functions. It 
is therefore natural that the resultant constants of 
magnetostriction can be either positive or ne ga­
tive. This circumstance is significant, since the 
classical theory accounts only for constants of 
positive sign. This special feature of the quantum 
theory of magnetostriction was pointed out earlier 
by Vonsovskii 7• The dependence of the constants 
of magnetostriction on the magnitude of the mag­
netic field (which stems from the theory) is a 
new and significant result. We note that the 
necessity of such a dependence was shown by 
Akulov 3 • 

The low tem~rature limit of applicabliity of the 
resultant formulas for the free energy and the con­
stants of magnetostriction was defined by the 
inequality (59) above. The upper limit is evi­
dently determined by the basic physical assump­
tion of the theory---consideration of only weakly 
interacting systems. Referring to this assump­
tion, we throw away terms of third and fourth 
order relative to the operators a1 win the Hamil­
tonian in the operators atw• Therefore, the upper 
temperature limit can be fixed from an estimate of 
the energy contribution of the discarded terms and 
comparison of them with the energy contribution 
of those that remain. The corresponding calcula­
tion gives 

(66) 

where J is the exchange integral. H, for example, 
accuracy within 20% is desired from (66), it fol­
lows that the expression for the free energy of 
a ferromagnetic monocrystal (57) and the formulas 
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obtained from it for the temperature dependence of 
the constants of magnetostriction are correct to 
the temperature of liquid hydrogen. 

CONCLUSIONS 

1. A systematic quantum-mechanical considera­
tion of a system of electrons in a ferromagnetic 
monocrystal gives the possibility of explaining 
the phenomenon of magnetostriction and once more 
confirms that the phenomenon of magnetostriction 
is essentially connected to the magnetic interaction 
of the electrons. 

2. The theory gives the temperature dependence 
of the constants of magnetostriction for the hexago­
nal crystals. 

3. The constants of magnetostriction must dis­
play a dependence on the magnetic field. In con­
nection with this fact, representations used in 
quantum theory involving the independence of the 
magnetic constants on the field require more accur­
ate definition. 

4. A definite analogy exists between the tempera­
ture dependence of the constants of magnetostric­
tion and magnetic anisotropy, as is evident from 
the comparison of Eq. (60) with Eq. (61). This 
analogy is connected with the character of the 
energetic spectrum of ferromagnetics at low 
temperatures. 

The proposed theory is clearly still incomplete. 
and needs, in the future, refinement and develop­
ment. Its deficiencies are connected, in the first 
place, with the assumed model of the ferromagnetic 
and, in the second place, with the approximations 
and assumptions made in the course of the calcula­
tions. In particular, it ougj:l t to be relieved of the 
assumption that there must be only one ferromag· 
netic electron at a site; ·the representation of the 
magnetic interaction in generalized tensor form, for 
all its advantages of generality, still bears a 
phenomenological character; other types of inter­
action of electrons in the lattice were not studied; 
the case of weak fields, which evidently present$ 
definite interest, was not considered. However, 
the initial aspects of the theory permit us, with­
out any difficulties in principle, to take into ac­
count many of these factors. 

In conclusion, we note that the method used in 
the present work for consideration of the magneto· 
striction of hexagonal crystals is also applicable 
to other problems of the quantum theory of ferro­
magnetism and, in particular, it can be extended 
to cubical crystals and to much more complicated 
systems (alloys, antiferromagnets ). These prob­
lems, which have an independent interest, will be 
considered in subsequent researches. 

Translated by R. T. Beyer 
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