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A macroscopic theory is developed for the interaction of bodies whose, surfaces are brought 
within a small distance of one another. The interaction is considered to come about through 
the medi urn of the fluctuating electromagnetic field. The limiting cases of separations small 
and large compared with the wavelengths of the absorption bands of the solid are studied. 
Upon going to the limiting case of rarefied media, the van der Waals\ forces of interaction 
between individual atoms are obtained. The effect of temperature on the interaction of the 
bodies is considered. 

I T is well-known that the forces of interaction 
between neutral atoms, located at a distance R 

from one another which is large compared to their 
internal dimensions, leads to an attraction 
inversely proportional to R 7 • These so-called 
van der Waals forces are obtained in the second 
approximation of perturbation theory, applied to the 
electrostatic interaction of two dipoles. Such a 
treatment is however valid only so long as the 
separation R is small compared to the wavelengths 
A corresponding to transitions between the ground 
and excited states of the atom. For R) A , retar
dation effects become important. The interaction 
of atoms when these effects are taken into account 
was studied by Casimir and Polder 1 . Here the 
perturbation operator is the sum of the electro
static interaction of the atoms and their inter
actions with the radiation field. The latter can, m 
the usual fashion, be regarded as the result of 
emission and absorption of virtual quanta. With 
respect to this interaction, the perturbation theory 
must be applied up to fourth order terms, and the 
calculations become rather unwieldy. In the limit
ting case of R » A , the attractive force turns out 
to be proportional to R- 8 rather than to R- 7 . 

The presence of attractive forces between 
neutral atoms naturally results in the presence of 
similar forces between two macroscopic bodies 
whose surfaces are brought to within a small 
distance of one another. However, the calculation 
of these forces, starting from the known interaction 
of the individual atoms, would be possible only for 
sufficiently rarefied bodies, i. e., for gases- a 
case which of course cannot be realized practi
cally. We can however approach this problem in 
purely macroscopic fashion (since the distance 
between the bodies is assumed to be large 
compared to interatomic distances). From this 
point of view, the interaction of the objects is 
regarded as occurring through the medium of the 

1H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360(1948) 
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fluctuating electromagnetic field which is always 
present in the interior of any absorbing medium, 
and also extends beyond its boundaries, - par
tiall y in the form of travelling waves radiated' by 
the body, partially in the form of standing waves 
which are damped exponentially as we move away 
from the surface of the body. It must be empha
sized that this field does not vanish even at 
absolute zero, at which point it is associated 
with the zero point vibrations of the radiation 
field. 

The method for calculating interaction forces 
which is based on these considerations has 
full generality, and is applicable to any body at 
any temperature. It also automatically takes into 
account retardation effects, which become 
important for sufficiently large separations between 
the bodies. In the limiting case of rarefied media, 
the method must of course lead to the same 
results as are obtained by considering the inter
actions of individual atoms. 

L CALCULATION OF THE FLUCTUATING 
ElEC'IROMAGNETIC FIELD 

We picture the interacting bodies as two media 
filling half spaces with plane-parallel boundaries 
separated from one another by a distance l (Fig. I). 

To calculate the fluctuating field 
in the interior of the two media, 

3 2 we shall use the general theory 
which is due to Rytov and is de

$ !scribed in detail in his book2 • 

This method is based on the 
introduction into the Maxwell 
equations of a "random" field 
(just as, for example, one intro-

FIG. l duces a "random" force in the 
theory of Brownian motion). 

2 S.M. Rytov, Theory of Electrical Fluctuations and 
Thermal Radiation, Publishing House, Academy of 
Sciences, USSR, 1953 
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In a dielectric, \fiOnmagneticmedium, these 
equations are, for a monochromatic field ( time 
factor e -iw ~* 

. w ( 
curl E = t- H, l.l) c 

curl H =- i ~ s E- i ~ K 
c c ' 

where £ = £(cu) is the complex dielectric constant, 
and K is the random field. The fundamental 
characteristic of the latter is the correlation 
function, determining the average value of the 
product of components of Kat two different points in 
space. By the very nature of the introduction of a 
random field in a macroscopic fluctuation theory, 
in which atomic distances are considered to be 
negligibly small, this correlation has the character 
of a 0-function. According to Rytov, it is given by 
the formula 

K; (x, y, z) Kk (x', y', z') 
(1.2) 

=As" (w) oiko (x- x') o (y -.y') o (z- z'), 

( 1 1 ) 7iw A=4n ;r+ 1L =21icoth'J.,., e <»IT- 1 _, 

where Tis the temperature and £ 11 is the imaginary 
part of £ = £' + i£ 11 ( for the quasistationary range 
of frequencies, an analogous formula was obtained 
by Leontovich and Rytov 4). 

We represent the function K(x, y, z) in the form 
of a Fourier integral, which we write for the 
half space x < 0 in the form: 

+co 
K (x, y, z) = ~ g (k) eiq•tos kxx dk. 

(1.3) 

-co 

Here and in the sequel we denote by q a two
dimensional vector with components ky, k z ( so 
that k 2 = k! + q2), and by r, the radius vector in 
they- z plane. For the Fourier components 
g(k), the correlation function corresponding to the 
spatial correlation (1.2) is (cf. reference 2, No. 4): 

A " gi (k) gk (k') = 4; oiko (k- k'). (1.4) 

* The question of the meaning of monochromatic 
components for quantities which are not expandable in 
the usual sense in a Fourier integral, (as is the case 
for the fluctuation field) is discussed in reference 2, 
No. 2, and reference 3, No. 117. 

3 L. D. Landau and E. Lifshitz, Statistical Physics, 
3rd Edition, Gostekhizdat, 1951. 

4 M.A. Leontovich and S.M. Rytov, j. Exper. Theoret. 
Phys. USSR, 23, 246 (1952) 

We now proceed to the solution of Eq. (1.1) with 
the appropriate boundary conditions on the 
surfaces of the two bodies. In medium 1 (x < 0), 
we look for fields E and H of the form: 

+co 
E1 = ~ {al (k) cos k.~x + ib1 (k) sin kxx} eiq•rJ k 

-co 
+co 

+ ~ ul (q) eiq·r-is,x dq, 
-co 

+oo (1.5) 
H 1 = : ) {([qa1] + kx [nbr]) cos kxx 

-CO 

+co 
+ : ~ {[qur]- sl [null} eiq·r-is,.,- dq, 

-00 

where n is a unit vector in the direction of the x 
axis, and 

(1.6) 

where the sign of the root is to be chosen so that 
the imaginary part of s will be positive**. We have 
here made use of the first of Eqs. (1.1). 

The first terms in these expressions represent 
a solution of the inhomogeneous Eqs. (1.1). Sub
stituting them in the second eqQ.ation of (1.1) and 
writing K in the form (1.3), we find the following 
relations, expressing a 1 and b1 in terms of the 
Fourier components g 1 of the random field: 

- q (q·g 1)-k;gv:n], 

kx 
bl =- el(k2-w2el I c2) [n (q•glr)+qglx]. 

Two-dimensional vectors in the y-z plane are 
indicated by the subscript r from now on. 

(1.7) 

The second integrals in (1.6) represent the 
solution of the homogeneous equations (1.1) (i.e., 
the equations with K omitted), and describe the 
plane wave field reflected from the boundary of 
the medium. The condition for transversality of 
these waves is: 

(1.8) 

In the second medi urn (the half space x > l ), the 
field E 2 , 8 2 is given by the same formulas (1.5), 
(1. 7), (1.8), with the index 1 changed to 2, 

** Since the imaginary part of the expression under 
the square root sign (w 2E" ;c2) is positive, when 
lms > 0 we also have Res> 0). 
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cos k xx, sin k xx replaced by cos k x(x-l), 
sin k x(x-l) and change in the sign of s (the 
"reflected" waves now propagate along the 
positive x direction). Finally, in the space 
between the media (vacuum), we have ( = I, K = 0, 
and the field is given by the general solution of 
the homogeneous equations, which we write 
in the form: 

+ro 
E3= ~ {v(q)e1Px+w(q)e-iPx}eicrrdq, (1.9) 

-ro 
+ro 

H:r= ~ ~ {[qv] + p [nv]) e1Px 
-ro 

+ ([qw]- p [nw]) e-ipx} eicrrdq, 

where 

V w2 
P = --q2 

c2 ' 
(1.10) 

and v and w satisfy the transversality conditions 

(l.ll) 

The boundary conditions on the surfaces of the 
media are the requirement of continuity of the 
tangential components of E and H. On the plane 
x = 0, this gives the following equations: 

+co 
~ alrdkx + U1r = Vr + Wr, (1.12) 

-co 
+ro 
~ (q au- kx blr) dk.x + q U1x + S1 U1r 

-co 

= q (vx+w.x)- p(Vr- Wr). 

The conditions at the plane x = l differ in having 
s 1 , a 1 , b 1 , v, w replaced by s 2 , a 2 , b 2 , v e ipl, 

-ip l . l we , respective y. 
The collection of boundary conditions and 

continuity equations determines all the field 
amplitudes. In what follows, we shall need only 
the field between the two media. For a given 
value of q, we resolve v and w along the mutually 

d. l r r perpen 1cu ar vectors q and nq, which we 
choose as y and z axes, respectively. The calcu
lation leads to the following formulas for the 
components of v and w, expressed in terms of the 
amplitudes g of the random field: 

-fco 
"0 = r L{s e-ipl(s p+s )qglX-slgiY 

u J~ 1 2 2 2 2 
-co kx-sl (1.13) 

qvy 
v~=---, . p 

g2Z } 
-k--::1:-' .::.._s-~- dk.x, 

qwy 
w~=--, . p 

where we have introduced the notation: 

11 = eiPl (sl- s1p) (s2- s2p) 

- e-ipl (s1 + s1p) (s2 + s2p), 

!!..' = eipl (s1 - p) (s2 - p) 

- e-ipl (s1 + p) (s2 + p). 

The quantity q runs through values from zero to 
infinity, while p runs through real values from CJJ/ c 
to zero, and pure imaginary values from zero to 
i oo • The first correspond to undamped plane 
waves in the space between the two media, while 
the second refer to exponentially damped (so-called 
"inhomogeneous") plane waves. 

2. CALCULATION OF THE FORCE OF ATTRACTION 

We shall calculate the force F of mutual attrac
tion, acting on unit surface of each of the bodies, 
as the xx-component of the Maxwell stress tensor. 
The tensor calculated from the expressions 
obtained above for monochromatic field components 
must still be integrated over all frequencies. For 
the definition of the time factor which has been used, in 
particular in formula (1.2), the integration over dCJJ 
must be extended between the limits - oo and ;1- oo. 

We shall integrate only over positive values of CJJ 

and so shall define the stress tensor as twice its 
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usual expression. Thus 
00 00 

1\2 2 
F = ~ F"'dw = 4"/t l {Ear+ Bar 

0 0 

- Eix- Hix} ~=O dw. 

(2.1) 

The dash over a symbol signifies a statistical 
averaging, to which the Fourier components g of 
the random field must be subjected. The averaging 
of components g referring to the same medium is 
carried out with the aid of Eq. (1.4) (with 
appropriate value of ! 11 ). Quantities g 1 and g 2 , 

referring to different media, are statistically 
independent, so the average of their products 
gives zero. 

Writing the squares of the integrals (1.9) in the 
usual way as double integrals, and carrying out 
one integration over the o - functions, we obtain 
after some transformations 

+oo oo 
F"' = 4~ ~ HI Vy + Wy 12+ p; IVy- Wy j2 (2.2) 

-co 0 

where one must substitute in place of v, w, the 
expressions in the integrands of Eq. (1.13), and 

the average product nk is to be taken simply as 
(A( 11 

/ 4rr3) o ik" The integration over dk x is carried 
out with the help of the formula 

+ro dk · i X l1C 

l j k2 - s 2 /2 = Is /2 (s- s*) 
-oo X 

We replace the integration over dq by integration 
over dp, setting q dq =pdp. 

After a sequence of transformations, we can 
represent F win the following form: 

n nw 
F"' = 47t2 cth 2T 

X f p2 dp { [(s1 + P) (s2 + p) e-2lpl _ 1 ]-1 
.) (s1-p)(s2-p) 

(2.3) 

+i-}+c.c. 

where c.c. denotes the complex conjugate expres
sion, and the integration with respect to p is to be 
carried out in the plane of the complex variable p, 
over the segment (w/c, 0) of the real-axis and over 

the whole upper half of the imaginary axis. 
It is an essential point that it turns out to be 

possible to represent F as the real part of an 
integral of an analytic function of p, despite the 
fact that the expression (2.2) was obtained by 
taking square moduli of the field components. This 
can be done, if we note that on our integration 
path p is either pure real or pure imaginary. The 
integrand in Eq. (2.3) coincides with the integrand 
in Eq. (2.2), (after carrying out the k x integration 
in the latter, and replacing q dq by pdp), for just 
such values of p. But, having verified this, we 
can from now on regard this expression as an 
analytic function over the whole plane of the 
complex variable p, which enables us to make 
various transformations of the path of integration. 

The expression (2.3) is itself finite, but 
contains terms which diverge upon integration over 

w. These are the terms with w3 , which appear as a 
result of the p integration of the terms with % in 
the curly brackets. However, this divergent term 
does not depend on the separation l of the bodies, 
and therefore has no connection with the problem of 
interest to us ofthe force of mutual attraction, and 
should be dropped. It represents the back reaction 
of the field produced by the body on the body 
itself, and is in fact compensated by similar forces 
on the other sides of the body. 

For the following investigation of the integral 
(2.3), we change the notation, replacing p by w p/c 
and s by ws/c. Also omitting the terms with %, 
we have, finally, 

n (2.4) F=-22a 
1tC 

X D r \ p2 3 cth 1iw '.[(sl + p) (s2 + p) e-2ipwlfc_] ]·-1 ,,e l j w 2T \ (s1- p) (s2- p) 
0 

+ [(sl + elp) (s2+e2p) e-2ipo.>lfc_ t]-l }dpdw, 
(s1- e1p) (s2 e2p) . 

The paths of integration for p and w are sho¥<n in 
Fig. 2a by the thick lines. 

If we may consider the temperature of the bodies 
to be equal to zero (the necessary con<.1/tions for 
this will be explained later) then coth ~ in 

2T 
Eq. (2.4) is replaced by unity. We shall first 
consider formula (2.4) for just this case. 

Formula (2.4) is inconvenient because it is in 
complex form, and because the integrand contains 
the expression e- 2 iwpl/c, which oscillates along 
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the real part of the path of integration over p. 
The last fact makes the integration particularly 
difficult for large values of l, when the oscil
lation becomes very rapid. We can eliminate these dif
ficulties by suitable changes of the paths of 
integration in the planes of the complex variables 
(I) and p. Namely, we shall transform these paths 
so that the p integration is taken only over real, 
and the (I) integration only over imaginary values; 

then the exponent in e2 iwpl/c will be real everywhere. 
For the brevity, we shall denote the upper right 

quadrants of the (I) and p planes ( together with the 
semi-axes which bound them) as Q wand Q . We 
break up the path of integration over p in £q. (2.4) 
into two parts, and first consider the one in which 
p runs through real values from unity to zero. 
Since we want to change the path of the (I) 

integration from the positive real to the positive 
imaginary axis, we must investigate the question 
of the existence of singular points of the integrand 
as a function of (I) in the region Q w· 

According to the well-known general properties 
of the function £ ((1.)), its imaginary part £ 11 > 0 
everywhere in Q except on the imaginary axis, 

h II W 
w ere t: = 0. On the latter, £((1.)) is real and 
positive, decreasing monotonically from some 
value dO) > l for (I) = 0 to unity for (I) = ioo. There
fore the square root s '= y £ - l + p2 = s '+ is 11 

(with real p) does not vanish anywhere within Q td 

i.e., there are no branch points. From this it fol
lows in turn that the inequalities s '> 0, s 11 > 0, 
which are valid on the real semi-axis, are also 
valid everywhere within Q w 

The integrand might have poles at the roots of 
the denimonator in Eq. (2.4), i.e., the roots of the 
equations 

(si + p) (s2 + 11) - e2ip"'lfc (2.5) 
(s1- p) (s2- p) -

But since s ', s 11 , and t: 11 are positive ( in the 
region Q J it is easy to see that for real p the 
moduli 

I~+;I>I, Is+ c.p/> I s-c.p ' 

FIG. 2 

and since le 2 ipwl/c I~ l, it is clear that Eqs. 
(2.5) can have no roots. Thus the integrand has no 

singularities in Q cJ It also drops sufficiently 
rapidly at infinity, so the path of integration over 
(I) can be shifted to the imaginary axis. 

Next we turn to that part of the integral in which 
p runs through pure imaginary values from zero to 
i ""· Here we must change both paths of integra
tion, over p and over (1.). However, we cannot make 
these changes in a simple succession, since, for 
example, it is impossible to show that in the 
general case there are no poles of the integrand in 
Q w for arbitrary imaginary values of p. But in 
integrating a function of several (in our case, two) 
complex variables, we have very great freedom in 
shifting the contours. Thus we can change from 
integration over certain contours C and C to 

{j) p 

other paths C ~ and C ',if we can in any way 
simultaneously shift the paths without having them 
pass through any singular points of the integrand. 
In the present case, such a procedure would be the 
simultaneous shift of the paths in the quadrants 
Q (I) and Q p' during which the product i (I) p remains 

real (and, clearly, negative ): 

Im {iwp} = 0; Re {iwp} <O. (2.6) 

In particular, the initial paths (real semi-axis for 
(I), imaginary semi-axis for p) and the final paths. 
(imaginary semi-axis for (I), real semi-axis for p) 
satisfy this condition. 

Such a transformation is , in fact, possible, for 
example,by introducing in place of the variable (I) 

in the original integral the real positive variable 
» =-i(l)p, then shifting the integration over p from 
the imaginary to the real axis (for fixed values of 
x), and finally introducing (I) once more as the 
imaginary quantity (I) = ix/p. Here, too, the 
integrand can have no branch points, since s could 
go to zero only for simultaneous pure imaginary 
values of (I) and p, which event is excluded by 
condition (2.6). Therefore, we need only show that 
there are no roots of Eqs. (2.5) for values of p in 

the region Q P for arbitrary real values of x. This 
presents no difficulties for the first of the equa-
. . h d 1.&+ tlons, smce t e mo ulus __ P lz 1 generally 

s-p 

for all (I) and p in Q wand Q P , which is easily 
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demonstrated by noting that s '> 0, s " > 0. 
The investigation is far more complicated for 

the second of Eqs. (2.5). We shall here outline the 
method of proof, assuming for simplicity that the 
two media are identical. From the equality: 

(s + r::p)2 = e- 2XI 
s-r::p ' (2.7) 

we conclude that ( s + € p) / ( s - € p) must be a 
real number less than unity in absolute value. 
From this it follows in turn that there must be a 
relation between the values of the complex 
quantities s, p, € of the form 

s = -asp, a> 0, (2.8) 

where a is some positive real number; one verifies 
easily that such a relation is possible only for 
€'> 0. This in turn excludes the possibility of 
having roots for values of x and p for which the 
argument of the function € (ix/p) is very small or 
very large, since we know that € '> 0 in both 
th~se cases. There can also be no roots for very 
large values of p, since then s "' p, and it would 
follow from (2.8)that s =- 1/a, i.e., the value of s 
would be real and negative, which is impossible. 

We shall first show that Eq. (2.7) has no roots 
for infinitesimal values of the parameter l. As we 
have pointed out, very large values of x are excluded 
for arbitrary l. For finite x, the right side of Eq. 
(2.7) approaches unity as l--> 0. The left side of 
the equation can tend to unity only if p-+ 0, (since s 
does not go to zero anywhere). But then we would 
also have to have x --> 0 (in order that the ratio 
xjp remain finite), and the right side of Eq. (2. 7) 
will approach unity for l --> 0 faster than the left 
side, so that for sufficiently small l , there can be 
no roots in any case. 

We show further that for arbitrary values of l 
there are no roots on the boundaries of the region 
Q P *· In fact, infinitely large values of p are ex
cluded as shown above, while the axis of abscissas 
(real p) is out, since the function f:(ix/p) of 
imaginary argument is real and positive. The 
ordinate axis (imaginary p) is excluded, since for 
such p the relation (2.8), when squared, would 
give a quadratic equation for €: 

€2a2 I P I + €- < 1 + I P 12) = o 
from which it would follow that € were real, which 
is impossible (for real argument ix/p ). 

With increasing l, roots could steal into the 

"!f. Except for the irrelevant , trivial root p = 0 for x = 0, 
whose position does not depend on l. 

region Q only across its boundaries. Therefore, 
p 

the absence of roots for very small l, and the fact 
that there are no roots on the boundaries of QP for 
arbitrary l, shows that there are no roots anywhere 
in Q for arbitrary values of l +. 

Tlfus the required change of integration path c1m 
be carried out in both parts of the integral. Upon 
adding the two parts, the integrals over p from zero 
to unity cancel, and we obtain the following expres
sion for t.he force of interaction for T = 0): 

( the path of integration is shown in Fig. 2b). Here 
we have introduced the notation w = i ~ for 

imaginary values of w, and € 1 and €2 are to be 

taken as the real functions € 1(i (;;and € 2(i ~). We 

have dropped the "Re", since the expression 
given .is manifestly real. Formula (2.9) makes it 
possible, in principle, to compute the force F for 
any separation l, if only the functions f:(i ~) are 
known for both bodies. The latter can be expressed 
in terms of the value of the in aginary part of the 
function € (w) for real w by 

co 

. 2 ~ wr::" (w) s(t~)-1 =- ---dm. 
11: w2 + ~2 

0 
(2.10) 

Thus we may say that the law of interaction of 
bodies is determined if we give the functions 
€ 11 (w); (we shall see, in Sec. 5, that this remains 
true for temperatures different from zero). 

3" THE CASE OF SMALL SEPARATIONS 

We first consider the limiting case of distances 
l which are small compared to the wavelengths 
that are important in the absorption spectra of the 
bodies (for a more exact formulation of this 
condition, see below). The temperatures which can 
occur for condensed bodies are always small 
compared to the values1rw (e.g., in the visible 
region of the spectrum) which are important here. 
Therefore we may set T "'0, and use formula (2.9). 

+The possibility of a root sneaking in at the point 
w = 0 is also excluded: for this to occur there would 
have to be a double root at w= 0 for some value of l, 
which does not occur. 
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Because of the presence of the exponentially 

increasing factor e 2 Pf l! c in the denominators of 
the integrands, the main contributions to the 
integral over p \come from values of p, for which 
p ~ljc "-' 1. But then p » 1, so that, in finding the 
leading terms, we can set, s 1 "' s 2 "' p. In this ap

proximation, the first term in square brackets in 
Eq. (2.9) becomes zero. After introducing the 
integration variable x = 2lp~ I c, the second term 
gives* 

(in this approximation, the lower limit 2l~l c of the 
x integration is set equal to zero). 

Formula (3.1) determines the force of attraction 
in the limiting case of small l. The force turns 
out to be inversely proportional to the cube of the 
separation, which, as was to be expected, is in 
accordance with the usual van der Waals force 
between two atoms(neglecting retardation). With 
increasing ~. the functions E (i ~) - 1 decrease 
monotonically to zero. Thus, starting with some 

~~ ~ Q , larger v.alu~s of~ ce~se giving any 
s1gmf1cant contnbution to the mtegral; the condi
tion on the smallness of l is that l « c / ~0 • 

Let us show how the transition to the limit of 
interaction of individual atoms is carried out in 
Eq. (3.1). For this purpose, we assume that both 
media are sufficiently rarefied. Then the 
differences E 1 - 1 and E 2 - 1 are close to zero, and 
we have, from Eq. (3.1), to sufficient accuracY., 

""00 

F = 64~21• ~ ~ X 2e-x (e1 - 1) (e2 - 1) dx d~ 
0 0 

"" 
= 32!2/a ~ [el (i~)- 1] [e2 (i~)- 1)dt 

0 

Expressing E (i ~)in terms of the values of E 11 (w) 
on the real axis of w,in acc~rdance with Eq. 
(2.10), we obtain 

"" 
~ [e1 (i~) -1] [e2 (i~)- 1] d~ 
0 

* This same result could have been gotten directly 
from Eq. (2.4), with the paths of integration shown in 
Fig. 2a, by noting that the main contribution to the 
integral comes from imaginary values of p. As already 
noted, imaginary values of p correspond to exponentially 
damped ("inhomogeneous") plane waves. It is entirely 
natural that just this part of the fluctuation field (and not 
the undamped, true plane waves) gives the main 
contribution to the interaction force for separations at 
which retardation effects are still unimportant. 

and find for the force F 

(3.2) 

This force corresponds to an interaction of the 
atoms with energy 

V=---3n __ 
8rt4R•N2 (3.3) 

where N is the number of atoms per unit volume. 
[ Equation (3.2) is obtained from Eq. (3.3) by 
integrating over both half-spaces and then 
differentiating with respect to the distance l 
between them]. Formula (3.3) agrees exactly with 
the well-known formula of London5, obtained by 
applying ordinary perturbation theory to the dipole 
interaction of two atoms. In making the comparison, 
one must note that the imaginary part of dw) is 
related to the spectral density f(w) of "oscillator 
strengths" by the relation 

<Us" (<U) = (2rr2e2 J m) Nf; 

while the oscillator strengths are themselves 
expr~ssed as usual in terms of the squares of the 
matnx elements of the dipole moment of the atom. 

Formula (3.1) can be represented sufficiently 
accurately for all practical purposes in a simple 
form. Let us assume, for brevity, that both bodies 
are identical. The integral with respect to x, in 
Eq. (3.1), depends, aside from the parameter on the 
quantity [ ( E + 1) I (E - 1 )] 2 , which takes on 'values 
never less than unity (unity is reached forE--. oo). 
Figure 3 shows a graph of the integral 

"" I=~(" x 2 dx 
2 j ae-"-1 

0 

as a function of the parameter a. This integral 

tends to unity for a --. oo, but we see that even for a = 1 
it differs from unity by at most 20% and that this dif
ference drops rapidly with increasing a. So we can 

5 R. Eisenschitz and F. London, Z. Physik 60, 491 
(1930) 
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practically write Eq. (3.1) in the form 

(3.4) 

(with a similar formula if the bodies are different). 
To evaluate the accuracy of the limiting law of 

interaction which we have obtained, it is useful to 
have the next term in the expansion of the function 
F (l). A calculation using the same general formula 
(2.9) gives (for identical bodies) the expression 

00 

- _'h_ r ~2 [e: u~> -1J: d~ (3.5) 
8n:2 c2 l ~ e: (i~) + 1 ' 

0 

which should be added to Eq. (3.4). However, it is 
impossible to give a concrete evaluation of the 
range of applicability of the limiting law without 
specific knowledge of the function di.;). 

4. THE CASE OF LARGE SEPARATIONS 

We now go over to the opposite limiting case of 
distances which are large compared to the 
fundamental wavelengths in the absorption 
spectrum of the bodies. Once again we shall first 
take the temperature to be equal to zero; for the 
meaning of this approximation in the present case, 
see below. 

Again we introduce a new integration variable 
x = 2 pl .; / c in the general formula, but we now 
keep as our second variable not .; (as in Sec. 3), 
but rather p: 

Because of the presence of e" in the denominators, 
the main contribution to the x integral comes from 
x "- 1, so since p ~ l, the argument of the function 
f, for large l, is close to zero over the whole 

important range of values of the variables. In ac
cordance with this, we may simply replace fl and 

f 2 by their values for w = 0, i.e., by the static 

dielectric constants, which we denote by f , f • 
1 10 20 
~e know that for metals the function d w) tends 
toward infinity as w -> 0; in this case we must set 
f 0 "' oo. In this way we finally obtain the follow
result: 

00 00 

F _ ~ \ \ X3 {f(S1o + p) (s2o + P) ex_ Il-l. 
- 32n:2 /" ~ ~ p2 L(s1o- P) (s2J- p) -

0 1 
(4.2) 

+ [(S1o + e:loP) (S2o+ e:2oP) ex -I ]-l}dp dx 
(slo-e:loP)(s2o-e:2oP) ' 

Here the force of attraction is inversely propor
tional to l 4 • It should be noted that in this limit
ing case it depends only on the static dielectric 
constants of the two media. 

The integration with respect to p in Eq. (4.2) 
can be carried out in terms of elementary 
functions, after which there remains a single 
integral over x, depending on the two constant 
parameters flO and f 20 . We shall not give the 
corresponding, very complicated, general expres
sions, the more so since for purposes of numerical 
integration it is clearly more convenient to start 
directly from the double integral of Eq. (4.2). 

Let us consider some special cases. In partieu
lar, a simple result is obtained for two metals. 
Setting f 10 = f 20= oo, we get 

00 <:o 

F _ "lie f (" x 3dpdx 
- 16n:2[4 ~ ~ p2 (ex -1) 

0 1 

(4.3) 

This force does not depend in any way on the 
nature of the metals [which was not the case for 
small separations (Sec. 3), where the magnitude of 
the interaction depended on the function di .;')for 
all values of (, and not just at .; = 0 ]. Formula 
(4.3) coincides with the formula, obtained by Casimir6 , 

for this special case, by considering the normal 
modes of the field in the gap between two walls 
which are ideally reflecting at all frequencies. 

For two identical dielectrics (f 1 = f = f ) o 20 o we 
give the result obtained from Eq. (4.2) by 
numerical integration: 

(4.4) 

6 H. B. G. Casimir, Proc. Nederl. Akad. Wetensch. 51 
793 ( 1948) ) ' 
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where cp(E0) is a function whose values are shown 
in the graph of Fig. 4 (the curve DD). For f -> oo, 

this function approaches unity according to fbe 
law 

( ) 1 1.11 l e:o 
r.p so = - ,/- n 76 

V e:o . (4.5) 

(Note that this formula is accurate only for very 
large values of f 0). For fo -> 1, the function 

cp(€0) approaches a finite limit, 0.35, corresponding 
to the limiting law (4.7) (see below). This limit is, 
however, practically reached for ! 0 "' 4, after which 
cp(E0) remains practically constant. 

1.0 

lfJ 
0.8 

O.o 

0.1/ 

o.z 

D 

i\ 

\' ..1!.!.. 

DD· 
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1/E_o 
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FIG. 4 

In the same Fig. 4 we show the curve (DM) of the 
similar function which gives the force of attraction 
between a metal and a dielectric (E 10= oo, E20 = ! 0) 

according to the formula: 

(4.6) 

Finally we carry out the transition to interaction 
of individual atoms in Eq. (4.2). To do this, we 
assume as in Sec. 3 that both media are sufficiently 
rarefied, i.e., that the differences f - 1 and f - 1 

10 20 
are small. 

Keeping only the first non-vanishing terms in the 
expansion of the integrands of Eq. (4.2) in powers 
of these differences, we get 

F= 32!;,~ (slo -1)ho-1) 

or 

F - 1tc __E._ (s 0 - 1) (e20 - 1) (4.7) 
- l' 64lht2 1 • 

This force corresponds to interaction of the atoms 
with energy 

U __ 23li.c (e: 10 -1)(e:20 -1) 
- 647t'R7 N 2 

237ic 
= - 47tR7 ocloc2, 

(4.8) 

where o:.1, o:.2 are the static polarizabilities of the 
two atoms. This formula coincides with the 
results of reference 1 for the van der Waals forces, 
including retardation effects; we have here obtained 
it from macroscopic considerations. 

To estimate the accuracy and range of validity 
of the formulas obtained, we must again, as in Sec. 
3, find the next term in the expansion of the 
function F (l) + . We shall do this for the case of 
two metals, which we assume to be identical. 

Formula (4.3) is gotten from (4.1) if we set 

! 1= € 2= oo in the latter. But if we also want to get 

the next term in the expansion, we must use that 
form for the function £ (w) which is valid in the 
frequency region which is important in the integra
tion. As we have seen, the important region is 
w/c rv 1/l, i.e., A rv l. Accordingly, we set 

(4.9) 

where N is the number density of free electrons in 
the metal; this formula, which is sufficiently good 
for our purposes, gives the general behavior of 
dw) in the infrared region of the spectrum .'j:. When 
substituting in Eq. (4.1), we must replace w by 
icx/2pl; then expanding the integrand in powers of 
1/ l, we obtain 

00 co 

X ~ x4ex dx ~ p2 + 1 d } 
P~ P.' 

o (e·~-1)2 1 

from which, finally, 

1tc 1t2 { c 1/m} 
F = F 240 l - 7 •2 ei J1 Fi . (4.10) 

+If we set f(i,f) = l + a/(w~ +,f2 ) (so that 

fo = l + a/ w ~ ) , then calculation of F from formulas 
( 3.4) and (4.4) shows that the two valuesmatch for 
l ~ c 1 w . This computation allows us to conclude that 
the char~cteristic length for comparison with l is not the 
wavelength in the absorption region, but rather A/2rr • 

.'j: For still larger values of A, the function dw) goes 
over into f = 4rria I w, where a is the ordinary electrical 
conductivity of the metal. However, the corresponding 
frequency region gives a very small contribution to the 
integral. 
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So, tentatively setting N = 5.9 X 102 2cm-3 (for 
silver), we find that the second term is small 
compared to the first, if l » 0.6 P.· 

We note that the second term in the expansion, 
which we have found here, could not be obtained 
·by the method applied in reference 6 for getting the 
leading term. 

s. THE EFFEGI' OF TEMPERATURE ON THE FORCE 
OF INTERACTION 

While we can practically always consider the 
temperature of the bodies to be equal to zero for 
the limiting case of small separations (sec. 3), the 
effect of temperature may be substantial for large 
separations. Anticipating later results, we state 
that the condition for setting T = 0 is roughly 
speaking, lT /he « 1. For sufficiently low 
temperatures, this condition will of course always 
be compatible with the condition determining the 
lower bound of values of l for which the limiting 
law obtained in Sec. 4 is valid. But these two 
conditions may, as for example at room temperature, 
turn out to be incompatible; then the region in 
which the limiting laws obtained in Sec. 4 are ap
plicable actually does not exist. 

To obtain the formulas including the effect of 
temperature, we turn to the original expression 
(2.4) and see how, for T =/= 0, we must change the 
transformations which led to formula (2.9) in the 
case of T = 0. The function coth 1icu / 2T has an 
infinite number of poles, located on the imaginary 
axis, and equal to 

·t. . 21tT 
Wn = lr:;n = l T n, (5.1) 

where n. is an integer. Therefore, upon shifting 
the path of integration to the imaginary axis, we 
must go around these poles on semicircles ( as 
shown in Fig. 2c ). These circuits give contribu
tions to the real part of the integral, which are 
equal to i 11 times the residue of the integrand at 
the pole. (The integration over the segments of 
the imaginary axis between the poles gives a pure 
imaginary number, which drops out when we take 
the real part of the expression). 

The point with n = 0 (cu = 0) requires special 
consideration. At first glance it might appear 
that this point is not a pole of the integrand in the 
integral over cu in (2.4), because of the presence 
of the factor w3 • However, this factor vanishes 
upon integration over p [ cf. also the expression 
(2.3) for F ]. The presence of a pole at the point 

w 
cu = 0 does not of course lead to divergence of 
(2.4), since for cu --+ 0 along the real axis the 
divergent contribution to the integral is pure 

imaginary, and drops out when we take the real 
part. [This can be seen more clearly from the ex
pression (2.3) for F , which remains finite for 
(J) = 0]. w 

To take this point into account when transform
ing the path of integration, we shall suppose that 
the integration over cu in Eq. (2.4) is carried from 
some sufficiently small o to oo ( and not from zero 
to infinity); as we showed above, the real part of 
the integral is not changed when we do this. 
Upon shifting the contour to the imaginary axis, a 
circuit is added along a quarter-circle around the 
point cu = 0 (Fig. 2c). This circuit gives a 
contribution to the integral equal to i TT/2 times the 
corresponding residue. 

To simplify writing of formulas, we shall assmne 
the bodies to be identical; generalization to dif
ferent bodies, on the basis of the general form of 
Eq. (2.4), is obvious. 

We thus obtain the following formula: 

Sn = Vsn- 1 + p 2, Sn = s (i~n). (5.2) 

The prime on the summation sign means that the 
term with n = 0 should be taken with a factor ~. 
Replacing p by the integration variable x = pn, we 
rewrite (5.2) in the form: 

87t2 T4 00
1 

00 {[(ns + x ,2 ]-1 
F = t• c" ~ ~ x2 ns: _ x} e41tlTx(lic _ 1 

n=On 
(5.3) 

+ [(nsn + c:nx)2 47tlTxt1i,c _ 11-1} d ns -c: x e J X, n n 

nSn = v n2 ( Sn -}) + X 2 , ( .21tT ) en= e tT n . 

Formula (5.2) or (5.3) enables us, in principle, to 
calculate the force F for any value of land any 
temperature. We see that, for T ==/= 0 also, it is 
sufficient to know the values of the function 
dig). 

For T --+ 0, the distances between poles also 
tend to zero, the summation over n can be replaced 
by an integration over e' and we return to formula 
(2.6) which does not contain T. By determining the 
first correction to this formula, we can establish 
a criterion for setting T = 0 in calculating the at
tractive force. We shall do this for metals, 
applying formula (4.9) for £(cu) as we did in Sec. 4. 

According to the Euler sum formula we have, for 
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a function f(n) which together with all its 
derivatives goes to zero for n -> oc, 

co ""' 

]' f(n) = ~f(n) dn + 1~j' (0) 
n=O o 

- 30\! !"' (O) + ... 
In our case the function f(n) is the integral under 
the summation sign in (5.3). In the calculation we 
sh.all assume that l is small compared to 1ie/T, but 
still large compared to the quantity (e/e) VmTfV 
which is characteristic for the metal. Then 
{'(0) == 0, f"' (0) == 2 and thus 

F =~"tic [t _ -18 (/T)4J 
240 l~ 9 "tic · (5.4) 

Thus, at room temperature the correction is already 
small if l < 5 11; comparison with the criterion 
obtained in Sec. 4 shows that in this case there is 
a region in which the formulas there obtained are 
applicable*. 

In the opposite limiting case of large values of 
lT /he, we need keep only the first term in the sum 
in Eq. (5.3), i.e., n = 0: 

or 

co r x2d.x 
~ 4 IT o [(e:0 + 1) I (e:o- 1)]2 exp { ;c X}- 1 

_, T (e:0 -1 )2 
~ 8n- [3 e:o + 1 I • 

(5.5) 

Thus for sufficiently large separations, the inter
action force stops dropping so rapidly, and once 
again follows a 1/[3 law, with a coefficient which 
depends on the temperature and on the static value 

of the dielectric constant. This fact has 
apparently not been previously noted anywhere in 
the literature. 

All the other terms in the sum (5.3) decrease 
exponentially for large lT /he. So, including the 
first correction term, we obtain for two metals 

* With the function E: = 4rria/(l) (cf footnote, p. 81 ) we 
would get a very much greater upper limit for l. 

F = _!_ [1 + 2 (4n-Tl)2 exp {-4'ltTl I he}]. (5.6) 
8n-f3 "tic 

Let us say a few words about the comparison of 
the results of the theory presented in this paper 
with experiment. Direct measurements of molecular 
attractive forces are very difficult, and apparently 
the only work in which the authors have succeeded 
in eliminating all spurious effects is that of 
Abrikosova and Deriagin 7. These authors measured 
the attractive force between quartz plates for 
separations 0.1- 0.4/1· Exact comparison with 
theory would require sufficiently co,mplete 
knowledge of the optical characteristics of the 
material over its absorption regions; without this 
we cannot construct the function t:(i .f). However, 
the character of the absorption in quartz enables us, 
to make an approximate theoretical estimate**. 
Considering the crudeness of this estimate, and 
possible errors in the measurement, we rna y state 
that the agreement between the theory and the 
experimental data is satisfactory. 

In conclussion I express my sincere thanks to 
Academician L. D. Landau for discussion of the 
problems considered here. I also thank 
I. I. Abrikosova and B. V. Deriagin for discussion 
of the experimental data, and I. G. Krutikova who 
carried out the numerical calculations mentioned 
in the text. 

7 I. I. Abrikosova and B. V. Deriagin, Dokl. Akad. 
Nauk SSSR, 90, 1055 (1953); I. I. .AJ)rikosova. Disserta
tion, Phys. Chern. Inst., Academy of Sciences USSR, 
1954. 
** Note added in proof.- Quartz has strong absorption 

in the ultraviolet (starting at about 0.15 /1) and in the 
infrared {starting at a few /1), between which regions it 
is transparent. The separations used in the 
experiments fall in the region of transparency; in making 
the estimate we may assume that l is small compared to 
A/217 (cf footnote, p. ) for the right absorption edge, 
and large comyared to the left absorption edge. The 
contribution o the ultraviolet absorption region to the 
force F can be evaluated from formula (4.4), setting £0 
equal to the square of the refractive index in the region 
of ·optical transparency. The contribution of the infrared 
region is given by formula {3.4); in order of magnitude it 
is a factor l(l) 1 c smaller ( w is the infrared absorption 
frequency), aJld can be negle~ted in a rough estimate of 
F. Thus we obtain for the force a 1jl4law, with a coef
ficient determined as above. This estimate is raised for 
larger separations and lowered for smaller separations. 
Translated by M. Hamermesh 
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