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The collisions of high, energy nucleons with nuclei are examined in a statistical theory 
of the multiple production of particles. The relation is calculated between the entropy of 
the nucleon-nucleus system (as determined by the initial stage of the collision), and the 
number of particles resulting when the system flies apart into individual particles. The 
entropy of the system is calculated using relativistic hydrodynamics. The dependence of 
the number of produced particles on the energy of the incident nucleon and on the atomic 
weight of the nucleus is found. 

1 IN the work of Fermi 1 andsuhsequentlyLandau 2 
• a statistical theory was developed for the multiple 

production of particles in collisions of nucleons of 
very high energy. Cnly the collisions of nucleons 
with nucleons were examined, while the collisions 
of nucleons with nuclei were not investigated. In 
experiments, it is precisely collisions with nuclei 
that are observed, and without a theoretical study 
(of this subject} it is, strictly speaking, impossible 
to compare theory and experiment. The aim of this 
paper is to clarify some problems connected with 
the interaction of nucleons with nuclei at very high 
energies. 

Let us note at first that Landau' s2 theoretical 
treatment of nucleon-nucleon collisions can be 
divided into two parts: In the first part the depend­
ence of the total number of produced particles on 
the energy of the initial nucleons is calculated. In 
the second part, the angular and energy distribution 
of particles is obtained. The calculation of the 
total number of particles, using general thermo­
dynamic relations, is relatively easy. The second 
part of the problem requires the complex methods of 
relativistic hydrodynamics. The results obtained for 
the total number of particles are much more accur­
ate than for the angular and energy distributions. 
Because of approximations in the solutions, only 
the order of magnitude of the latter can be obtained. 

In this paper we will limit ourselves to the first 
part of the nucleon-nucleus problem --- the calcula­
tion of the total number of produced particles as a 
function of the incident nucleon energy and the 
atomic number of the struck nucleus. 

Consider the derivation of the energy dependence 
of the total number of particles in the nucleon­
nucleon problem2. The following considerations are 

1 E. Fermi, Progr. Theor. Phys. 5, 570 ( 1950) 
2 L. D. Landau, lzv. Akad. Nauk SSSR 17, 51 (1953) 
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used. At the moment of nucleon collision, a 
system arises in which the mean free path is 
small compared to the dimensions. Thus the ex­
pansion is hydrodynamic in nature; the number of 
particles in the system relllains undetermined dur­
ing the expansion process, and becomes fixed only 
at the moment the system flies apart into separate 
particles. 

Since during the whole expansion the motion is 
adiabatic, the system entropy remains constant 
until the system flies apart into separate particles. 
At the moment the system falls apart, the entropy 
of each small region is proportional to the number 
of particles in it. Summing over all such regions 
we have for the entire system: 

N = const·S, (l) 

where N is the total number of particles, and S is 
the total system entropy. Since the entropy re­
mains constant until the moment of disruption, it is 
sufficient to calculate it at the beginning of the 
collision, immediately after the condensation of the 
system. It follows that in the center of mass 
frame, all matter is at rest immediately after the 
collision. Let E 'be the energy of the nucleons 
in the center of mass frame. The total system en­
tropy is proportional to E 314 V, where E is the 
energy density and V the volume in which the 
energy is distributed (this, if the equation of 
state for the system is p = E/3 ). Since V, due to 
the Lorentz contraction, transforms backproportional 
to E ', and since the energy E in the laboratory 
system is proportional toE ' 2, we finally obtain: 

(2) 

Taking account of Eq. (l), we have 

N .-..- E'1• • (3) 
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Let us now consider the collision of a nucleon 
with a nucleus. Since the distance between 
nucleons in the nucleus is of the order of the 
nuclear force range, it is necessary to examine 
the process of particle production in the entire 
nuclear volume traversed by the incident nucleon. 
It is not difficult to see that both assumptions used 
to derive Eq. (3) need modification in the nucleon­
nucleus case. In the first place, due to the 
presence of the nucleons participating in the pro­
cess it is impossible to consider the number of 
particles proportional to the entropy S. Secondly, 
the calculation of the entropy change must be 
modified, since the asymmetry of the collision 
makes it impossible to indicate a time after the 
collision when all matter is at rest. 

2. We begin by finding the dependence of the 
number of particles produced on the entropy. Let 
the disruption of the system into single particles 
take place at a temperature T k, of the order 
m17 c 2 , where m17 is the mass of a rr- meson, and c 

the velocity of light. Particles at this temperature 
can be considered to form a perfect gas. Since the 
temperature at disruption is unknown, it may be a 
relativistic gas. We shall present expressions for 
the number of particles and for the entropy of a 
Bose gas ( rr-mesons} and a Fermi gas (nucleons}. 
We shall not consider other particles, since their 
contribution is relatively small. 

For the density of nucleons, we have 

(4) 

where 

Here g H is the statistical weight, in this case 
four (two spin states and two charge states), M 
the nucleon mass, p. and p. chemical potentials, 
respectively, of nucleons a~d antinucleons [the 
second term of (4) is for anti-nucleons]. 

The density of rr-mesons is 

nrc= (!~Y 2~~ F2 (z,O). (5) 

Here gn = 3, z = m"c2 / kT, 
00 

F1,2(z,y) = z 3 \ exp {-zVi+X,;; + y} x 2dx.(6) 
~ 1 + exp {- zV1 + xz + y} 

The plus sign (corresponding to the function F 1 ) 

is for fermions, the minus sign (corresponding to 
the function F 2 ) for bosons3. 

3 S. Z. Belen'kii, Dokl. Akad. Nauk SSSR 99, 523 
( 1955) 

If z > y, then F 1 2 ( z, y) may be put in series 
form: ' 

F1,2 (z, y) 
(7) 

00 

= z2"" (+ l)m exp {y (m+ 1)} K2 [z(m +1)] 
.LJ (m + 1) ' 

m-=O 

where K2 (z) is a modified Bessel function of the 
second kind. 

We now derive an expression for the particle 
entropy. For the density of entropy of nucleons 
and anti-nucleons, following from the relation 
S =(E-N - n)/ T, we have p. 

Sn = k (~~ r ;;2 [01 (z1. Y1) + 01 (zlo Y2) 

For the density of meson entropy we obtain 

where 

(8) 

(9) 

01,2 (z, y) = <I\.2 (z, y)- 'l-"1,2 (z, y) 
(10) 

== + z3 ~In (I+ exp {y- z Vt +x2}) x~ dx. 
0 

The functions 11> 1 2 (z, y) 3 and '1'1 2 (z, y) are 
related to the energy and thermodynaniic potential 
Q of the particles by the following: 

E R (kT \a 
3 = V = kT 2"2 he) <1>1•2 (z, y); (ll) 

!1 g (kT )3 
UJ = v = kT 2r.2 tiC '1'1,2 (z, y), 

where £ and w are the energy density and thermo­
dynamic potential density respectively. 

For the case z < y, G 1 2 ( z,,y) may be written 
as the following series: ' 

00 

01,~(z, y) =Z2 ~ey(m+1>(=t-=J)m (12) 
m=O 

X 4K2 [z (1 + m)] + z (1 + m) K1 [z (1 + m)] 
(1 + nz) 2 
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mncl 
Z=--

kT F,(z. 0) F,(z, O) <l> 1(z, 0) 

mass of the 17-meson) 

0 I 1.803 2.40 5,68 
0.5 1.72 2.17 5.58 
0.7 1.65 2.02 5,47 
0.9 1.56 1.86 5.33 
1 1.52 1. 78 5.24 
1.2 1.41 1.62 5.05 
1.5 1.25 1.39 4,72 
2 0.982 1.05 4,07 
3 0.546 0.561 2.72 
6 0.055& 0.0599 0,471 
7 0.0268 0.0268 0,237 
8 0.0117 0.0117 0.115 

where K 1 (z) is a modified Bessel function of the 

first kind. 
The functions F ( z, 0), <I> 1 2( z, 0 ), and 

1,2 , 
G ( z, 0) which determine the density of parti-

1,2 
cles, energy and entropy for fermions and bosons 
are given in the Table. 

I 
<l>,(z. 

0) I O,(z. O) O,(z. O) a(z) 

6.49 7.57 8,65 0,25 
6.30 7,37 8.31 0.213 
6,12 7,19 8.02 0,216 
5.90 6,95 7,67 0.221 
5,78 6,81 7,48 0.223 
5,51 6,51 7,07 0.222 
5.06 6,00 6,42 0.215 
4.27 5,07 5,31 0.198 
2.78 3,27 3,33 0.169 
0.471 0.531 0,531 0.113 
0.237 0,263 0.263 0.102 
0.115 0,127 0.127 0.0927 

Since nucleons and anti-nucleons annihilate in 
pairs, creating various particles with total chemi­
cal potential of zero, it follows that the chemical 
potential of an anti-nucleon is equal and opposite 
to that of a nucleon. That is, y 1 = y and y 2 = - y. 

From Eqs. (4)-(9) we obtain the following expres­
sion for the total entropy of the system: 

s 
k 

Or (zr, y) +Or (Zr, - y)- y [Fr (Zr, y)- Fr (zJ, 
Fr (Zr, y) + Fi. (Zr, - y) 

-y) ;\T 
lVn (13) 

+ 0 2 (z, 0) N 
F2 (z, 0) _"_·-----------------

Here N n is the total number of nucleons and anti­
nucleons, and N the total number of rr-mesons in 
the system. We 7tave made the transition from 
particle density to the total number with the as­
sumption that each region of the system at dis­
ruption has the same average values of z and y. 
Furthermore, we take into account the conservation 
of nuclear charge, which implies that the difference 
between the number of nucleons N nn and anti­
nucleons N must be equal to the number of ini-

an 
tial nucleons N 0 

Nnn- Nan= (~Y ::2 [Fl(zl, Y) (14) 

Here V is the total volume of the system. 
Let us first examine the case N 0 = 0. It fol-

lows from Eq. (14) that y =- y = 0. From Eq. (13) 

we obtain .1< !* _ Jj_ 
1\ -OCk' 

(15) 

and N* = N + N , i.e., N* is equal to the sum of 
m 1T 

particles produced with N 0 = 0. The function 
IX ( z) is given in Table I. It is evident from the 
Table that IX ( z) is weakly dependent on z, i.e., on 
the temperature. 

It is not difficult to show that when kT «m17c 2 , 

IX(z) ~ 1/(z +5/2), i.e., N* ~ [1/(z +5/2)] 
x(S/k). 

Let us now return to Eq. (13). Instead of S we 
use the ratio of the number of particles N* (pro­
duced with N = 0) to N 0 • Multiplying both sides of 
Eq. (13) by IX (z) and dividing by N 0 , we obtain 

N''' = [ 01 (zr, y) + Or (zr, - y) 
No Fr (zr, y)- Fr (zlo - y) 

(16) 

..L gr. 02 (z, 0) J ( ) 
- Y 1 !i;; Fr \z1o y)- F1 (z1, - y) oc Z • 

On the other hand, it is not difficult to see that 
the total number of particles is 

N N,.+ N,n 
N0 = No 

g"F2 (z ,0) + gn [F1 (zr, y) + Fr (zio-y)) 

gn [Fl (zr, y)- Fr (zr, - y)) 

(17) 
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The two equations (16) and (17), together with 
the parameter y, determine the dependence of 
NIN 0 on N* IN 0 (i.e., on the ratio of entropy to the 
initial number of nucleons). If we assume z 1 »y, 
and therefore leave only the first terms of the 

F 1 ( z, y) and G 1 ( z, y) series expansions, the 
solution of the equations becomes materially 
easier. Physically this assumption means that we 
neglect the difference between a Fermi and Max­
well distribution for the nucleons, which is 
allowable in this case. Since the quantity y then 
appears as an exponential in the distribution func­
tion, it is not difficult to show that 

F1 (z1, y)- F1 (zit - y) = 2F1 (Z1, 0) shy, 

F1 (zl> v) + F1 (z1, - y) = 2F1 (z1, 0) ch y, 

0 1 (z1, y) + 0 1 (z1, - y) = 201 (z1, 0) ch y. 

As a result, instead of Eqs. (16) and (17), we 
have 

(18) 

From these equations the ratio NIN as a func­o 
tion of N* IN 0 was found. This is shown in Fig. l. 

If the number of initial nucleons is sufficiently 
large, and if the critical temperature T k is not too 
high, then sinh y = grr;F2 (z) N 0 is much 

2gHF1 (z) Nrr; 

larger than unity. This condition means that the 
number of initial nucleons significantly surpasses 
the number of nucleons produced with N = 0. 

0 
If sinh y and y > l, then Eq. (18) becomes 

j=~+cx(z)ln(o-l)+B(z), (19) 

where 

With z » l 

B (z) = ln (g 0 / grr;) (M 1 m)•f, 

z + 5/2 

m c2 

Z=-fr-. 

If y > 1, then y "' o; with 0 - l < l 

0- 1 = exp f- B (z) + 1- Yl· 
) a.(z) j' 

if also z » l, then 

FIG. 1. kT/mc 2 is: I. 1.25; 2. 1.0; 3. 0.67; 4. 0.5. 
The dotted line corresponds to y=o. 
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N-No 
No 

{ ( mc2 5 ) ( V* )} X exp - kT + 2 1 - 7v-;; 

Figure I [calculated from Eq. (18)] shows, for 
the various chosen temperatures of disruption T k' 

that N IN 0 is always less than N* IN 0 until the 
y "" 2 region. (Note that N includes the number of 
initial nucleons N 0 • ) The difference between 
NIN and N* IN 0 is larger, the lower the tempera­
ture <t k. Already at N* IN 0 = 3 and z = mc 2 lkT =2, 

NIN 0 = 2.54, i.e., the ratio NIN* = 0.85 .. For 
y < 2, the number of newly produced particles 
falls rapidly, and approaches unity. It is seen from 
this that the relation 

N = const • S 

is also valid for the collision of a nucleon with a 
nucleus until N* IN is of the order of two. N is 
the sum of particle~ produced during the collision 
and the initial nucleons. 

3. Let us now calculate the change in entropy. 
In the nucleon nucleon problem it was not neces­
sary to examine the mechanism of compression, 
since the results could he obtained immediately 
from symmetry considerations. The situation is 
quite different for the nucleon-nucleus collision. 
Let us apply our model of nuclear matter as a con­
tinuous medium to the first stage of the collision --· 
the compression. 

It will turn out from the following that the most 
convenient system of coordinates is that in which 
the nucleon and nucleus have equal and oppositely 
directed velocities. In this reference frame, due 
to the Lorentz contraction, both nucleon and nucl­
eus look loke very thin disks. Thus, the problem can 
he considered one dimensional. In this case the 
collision of the nucleon with the nucleus appears 
as the collision of the nucleon with a tube cut from 
the nucleus4, with a cross section equal to that 
of the nucleon and a length between the contracted 
diameters of nucleus and nucleon. With the close 
approach of the nucleon to the tube, impact waves 
propagate in both directions with velocity D 
through the nuclear and nucleon matter (Fig. 2 ). 
Of course, we can speak of the propagation of im­
pact waves in the nucleon only provisionally. 
Hydrodynamic considerations are used in this 
case for orientation. 

4 IL.Rozental' andD.S. Chemavsk.ii, Usp. Fiz. Nauk 
52, 185 ( 1954) 

0 0 
-+- --

FIG. 2 

v=O 

X 

FIG. 3. The dotted line is the boundary of 
the rarefaction wave. 

Because of the equality of velocities v 2 of the 
approaching particles in the chosen reference 
frame, the matter between the impact waves is at 
rest. The impact wave traveling to the left will 
reach the edge sooner than the wave traveling to 
the right (in contrast to the nucleon-nucleon situa­
tion where both waves reach an edge at the same 
time). When the impact wave reaches the left 
edge, the compression ceases, and an outflow of 
matter hegins (Fig. 3 ). This means that a 
wave of refraction travels to the right with a 
velocity equal to that of sound in the medium. At 
the same time, the impact wave continues travel­
ing to the right, since it has not yet reached the 
right edge. The calculation of the entropy will he 
different depending on whether the rarefaction wave 
overtakes the impact wave before it reaches the 
right edge. It is known that the speed of sound in a 
medium (equation of state p = f/3) isS 

U=C /VS. (20) 

Let us now calculate the velocity of the impact 
wave. We change to a coordinate system in which 
the impact wave is stationary. Then (Fig. 2) the 
velocity of matter behind the impact wave is D, 
while ahead of the wave it is 

'V2 + D 

Because of the continuity of energy and momentum 
flows through the impact wave front, we have 5 •6 

JIJ + (D2/ c2) ZJ 
1.- (D2 I c2) 

P2 + (v~2/ c2) <=2 

1- ('<!~/ c') 

5 L. D. Landau and E. M. Lifshitz, Mechanics of 
Continuous Media, 1954 

(21) 
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(D I c) (PI + e:I) 
1- (D21 c2) 

(v~ j'c) (P2 + z2) 

1- (v;21 c2 ) 

Here p 1 and E are the pressure and energy 
density behind the impact wave, and p 2 and c2 

(22) 

the pressure and energy density ahead of the wave. 
Dividing the first equation by the second, we obtain 

PI + (D21 c2) e:I - P2 + (v~2 I c2) e:2 (23) 
(D I c) (Pl + e:1) - (v~ I c) (p2' + e:2) 

Since the velocity v of the colliding particles is 
very close to that pf li~ht, the velocity t) ~ 'will be 
also. Assuming v, ~-' = c we see that the right 
side of Eq. (23) is unity, and consequenlty our 
results are independent of the equation of state for 
the matter ahead of the impact wave. 

Making use of the equation of state for the mat­
ter behind the impact wave ( p 2 = c2 ; 3 ), we obtain 

the following for D: 

( _1 + D2 ·) j_±_ _Q_ = l 
3 c2 3 c ' 

from which it follows that 

D = 1j3c. (24) 

It is now possible to find the minimum tube 
length l k in which the rarefaction wave will over­
take the impact wave. This is determined by the 
ratio 

(ik 1 d) -1 

D ll 

lk 'D + u 
or d = u-D' 

where d is the nucleon "diameter". 
Substituting the values of u and D, we obtain 

Let us assume that the tube length l is smaller 

(25) 

than lk, i.e., that the impact ~a~e traveling to the 
right reaches the edge before 1t IS overtaken by the 
rarefaction wave. In this case it is very easy to 
calculate the entropy. One calculates the entropy 
of the separate regions of the system immediately 
after the passage of the impact wave, at which 
time they are at rest in our reference frame. It is 
not difficult to see that the change in entropy of the 
entire system is then 

_§__ =-1 (-/ +1) 
S0 2 tJ 

or I 
d<,.3.7, (26) 

where S is the change of entropy in the nucleon­
nucleon °process, and l the tube length. This 

result may be obtained with the aid of a calculation 
applicable to the nucleon-nucleon problem (see 
above), keeping in mind that the effective volume 
is that of the tube plus that of the nucleon, and 
that the matter is at rest in the frame where veloci­
ties of the initial particles are equal and opposite. 
In an outline of such a calculation 4 the assumption 
is made that matter is at rest in the center of mass 
frame, but this is incorrect. 

For tube lengths exceeding l k = 3. 7 the solution 
becomes more complex. The rarefaction wave over­
takes the impact wave in this case, but cannot 
cross its wave front, since the impact wave 
travels in the matter of the oncoming nucleus with 
a velocity greater than that of sound in the matter. 
The rarefaction wave is reflected by the impact 
wave. A region is formed bounded by the 
impact wave on the right, and by the rarefaction 
wave on the left (Fig. 4 ). 

p 

FIG. 4 

To describe the motion of the medium in this 
region, we refer to the arbitrarily similar motion 
of a compressible gas5 • In the ultra-relativistic 
case the equation of motion becomes6 

iJ2x iJ2x ox 3-· ---2--0 all dy2 ay - · (27)* 

Independent variables here are the quantities 
"1 = arc tanh v / c, where v is the velocity of the 
medium, c the velocity of light, and y = ln ( T /T ), 
T the temperature of the medium, T 0 the tempera~ 
ture at points where v = 0. The coordinate x and 
time t are expressed as a function of X by . -

x = e-:Y (ax sh 'YJ - ~ ch'~'J) oy a7J • 

'o a ) t = e-Y (..1... ch 'YJ - ..L.. sh'Y) . dy . 01) 

Thus if the function X ( TJ• y ) is found, Eq. 
(28) gives x and t as functions of T and v. 

(28) 

The region of interest is bounded on one side by 

* In reference 6, the coefficients are different 
because of typographical errors. 

6 I. M. Khalatnikov, J. Exper. Theoret. Phys. USSR 
26, 529 ( 1954) 
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the rarefaction wave, and on the other by the im­
pact wave. Let us determine the boundary condi­
tions for the function X· It follows from reference 
6 that, at the rarefaction wave boundary, 

x=O for 'l)=V3 y. (29) 

must be satisfied. 
Let us consider the boundary condition at the 

impact wave. Since in this case the matter be­
hind the impact wave is not at rest, transformation 
to a reference frame in which the wave front is 
stationary gives for the velocity behind the im-

pact wave: 

iJ2x- 2V3(2- y3) ~ 
doc 2 iJoc iJ~ 

(35) 

-4 ilx + 2 V3ilx = O· 
doc il~ ' 

X. = 0 when ~ = 0, 

[~ + (5- 3V3)~] iJa. i)~ 
(36) 

X [ 1 + 2 ;: - y3 :~ ] X = 0 

when e< = 0. 

Let us apply a Laplace transformation to the '<h+D 
(30) variable ~ 

Here v 1 is the velocity behind the impact wave in 
the reference frame where the incident particle 
velocities are equal. 

Equations (21) - (24) remain applicable to the 
present case if v 1 'is substituted for D. It fol­
lows that v 1 '= 1/3 c [see Eq. (24) ]. Equation(30) 
then gives a relation between v and D which may 
b . 1 

e wntten 

D = dx = 'l + 3th ·'l 
dt 3 + th 7) ' 

(31) 

since v =-tanh TJ· Using Eqs. (21) - (24) with 
v subs\ituted for D, it is not difficult to obtain 
th~ following expression which is obeyed on the 
impact wave: 

~ ( T )4 
~I)= To = 

In the variables TJ and y 

1- (11 1 / cj 
1 + (·v1 / c) 

(vi=- th·fl, y =In JJ; 
this means 

'1j=2y. (32) 

Substituting the value of dx/dt calculated from 
Eq. (28) into Eq. (31), and using Eq. (32), we ob­
tain the following condition on the impact wave: 

( 3 d~ +5 0~-) ( 1 - d~ ) X = 0 for 'f) = 2y. (33) 

Let us change to the.variables 

C<='f)-2y, ~=V3y-'l). C34) 

In the new variables the equations for X and the 
boundary conditions take the following form: 

'10 

f (e<, p) = ~ x. ( e<, ~) e-Pf3 d~ (37) 

0 

and search for a solution off( oc, p) in the form 
a(p)ekoc. Then Eqs. (35) and (36) yield the fol­
lowing algebraic equations for a ( p) and k: 

k~ - 2 y3 (2 - }13) kp 

- 4k + 2 y3 p = 0, 

[k + (5 --3y-3)p][l + 2k- lfJpl a 

= (9_-5y3); 

(38) 

Here A is the coordinate value at which the rare­
faction wave overtakes the impact wave; 

(39) 

Having determined a (p) and k , an inverse La­
place transform would give X• and thus solve the 
problem. However, we are not interested in the 
complete solution, but rather in the change of en­
tropy during the time that the impact wave phsses. 
The entropy change can be written: 

t ' 

sl = cro ~ suldt'. 
~~ 

(40), 

Here a 0 is the tube cross section, and s is the 
entropy density after the impact wave; u 

1 
(v~{c) 

, where v 1 ' is the matter 

velocity behind the impact wave front (since 
v '/c = 1/3, u = 1/2 y' 2 ), t 1 'is the time at 
wfiich the rarefaction wave overtakes the impact 
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wave t 'the time at which the impact wave reaches 
' 2 

the right edge and dt' an element of time in the 
reference frame where the impact wave front is at 
rest: 

dt' = dt V 1 - D 2 = V dt2 - dx~. 

Using Eq. (28), the condition "fJ = 2y at the impact 
wave, and the fact that the ratio of entropy densi­
ties sjs behaves as (T/To) 3 when the matter af-

.o b . ter the Impact wave comes to rest, we o tam 

Yk (41) 
S 1 \ e2Y[~(~ -1)x] dy. 

1 = 0 o g ~ iJy iJy r.=2Y 
0 

Here y k is the value of y at the instant that the 
impact wave reaches the edge of the system. 

Changing to the variables "' and (3 we have 

"" 1 ~ -S = J . e-213/(2-V 3J 
1 0 9(2-lf3) 

0 

(42) 

[( a iJ)/ a -v-a) J X --- \1+2-- 3- X d~. 
iJrx. c)~ iJrx. a~ "-o 

f :::[:lh } 
Multiply both sides by exp lZ- .,r3 . Let us 

then carry out a Laplace transformation. Using the 
curl theorem, we obtain for a representation of the 

{ 
2~k 

quantity S1 exp 2 _ .,r3 } : 

cro 1 

9(2-- V3> p-2/(2-V3> 

X {(k- p)(1 + 2k- V3 p) a- y31.}. 

Substitute into this the values of k and a calcula­
tea from Eq. (38). (Fork a quadratic equation is 
obta~ned; the solution with the minus sign before 
the square root is chosen. } As a result, we have 

(44) 

The integral in Eq. (44) is taken in the complex 
plane along a: line which is to the right of all 
poles of the integrand. 

Substituting Eqs. (43) into (44), the integration 
is carried out. We make use of the known relation 7 

As a result we obtain: 

(45) 

where (3 'k = (3 k/ (2- y'S ). 
To determine (3 k we have the following relation: 

(46) 

where t 0 is the instant at which the rarefaction 
wave overtakes the imp act wave, L the coordinate 
value of the right edge at this instant, x and t 

k k 
the coordinate and time when the imp act wave 
reaches the edge of the tube. Expressing x and 
t through a potential, and remembering that 
t 0 = .\ y'S, we obtain 

cJx ox (L +Y-3 , ) -y ----= "e k 
iJy O"fl 

(47) 

or in the variables "'and (3: 

[ox V;- ox ] - 3 - ·- ( 3 - 1) --', 
orx. o[)k «=0 

(47 ') 

W(p)=Jo[ (5 + 3 lf:~ 'A 
2 V3 (q-2)(q-5) 

(43) A similar calculation, carried to higher order, 
leads to the following expression: 

+ (lf3-1)'A 1 ], 
2 V3 (q- z) (q-5) V3 (q -1) + y3 (q-1)2 +1 

where q = (2- y'3)p. 
Inverting the Laplace transform, we have 

(48) 

7 V. A. Ditkin and I. I. Kuznetsov, Handbook of Oper­
ational Calculus, Moscow, 1951 
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The tenns containing integrals in Eqs. (45) and 
(48) contribute not more than 2% ot the total, and 
may be thus dropped. The_Eoefficient of the first 
tenn in Eq. ( 45) ( 5 + 3 y 3 ) I 6 y 3 can be re­
placed by one to a good degree of ~proximation. 
As a result we have 

(49) 

(7 + 4 y3) e4f>~ 

y3(~3+ 1) (L + VJI,) + I. 

It is not difficult to be convinced that L +v3 A 
= 4l- 2 d. Since A= ( 3 + y3) d, the second of 
Eq. (49) may be written: 

' I 
(7 + 4 y3)e4r>~t = 4{[ -1. 

Finally, we have for the change in entropy the 
following expression : 

SSo = 0,92 ( dl - _41 )s;, wi"th l 7>3.7. (50) 

where S0 is the change in entropy due to the col­
lision of the nucleon with the nucleus, Sis the 
whole change of entropy due to the collision of the 
nucleon with a tube of length l. 

In head on collisions of a nucleon and nucleus 
l/d =A 113 , where A is the atomic number. The 
value l = 3. 7 corresponds to A =51. If Eqs. (26) 
and (50) are averaged over all possible collisions 
in the nucleus, from head on, to collisions of the 
incident nucleon with peripheral nucleons, we ob­
tain (not separately considering lateral nucleon­
nucleon collisions, which, we feel, are already 
accounted for in the equation for nucleon-nucleon 
collisions): 

tt 
3,01 

I.Oo~----------~,o~o----------z~omo-nn. 

FIG. 5. The dotted line is S!S0 = AO.l9. 

For A< 51 

S t A- (2A'I, -1)'/, 
-=- '/ +0.5; 
So :3 (A • -1)~ 

(S1) 

For A> 51 

Sso = 4 [0.167 (A"1 .. -A~''") (52) 
(A'/,- 1)2 

+ 112 (A 0 - (2A 'I, - 1 )'1•)] 

A''•-A '!, 
- 0.6 ° + 0.5 where Ao =51. 

(A'I, -1)2 , 

Figure 5 shows the dependence of S/S0 on A. 

The dependence may be ~proximated with an ac­
curacy of 4% by the expression 

Translated by G. L. Gerstein 
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(53) 


