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For example, with A rv 1mm and N rv 10 8 , we 

get q rv 30.The existence of an initial velocity spread 
max 

of the bunch when entering the undulator, and the 
impossibility of providing equally good injection 
conditions for each of the electrons of the bunch, 
shortens considerably the maximum possible 
length of the undulator. Therefore, an undulator 
with too great a number of spatial periods of the 
field is undesirable. 

1 V. L. Ginsburg, Izv. Akad. NaukSSSR, Ser. Fiz. 11, 
165 (1947) 

2 H. Motz,J.Appl.Phys. 22, 527 (1951) 

3 H. Motz, W. Thon and R.N. Whitehurst, J.Appl. Phys. 
24, 826 (1953) 

Translated by D. Lieberman 
145 

On the Paper ''The Excitation Spectrum of 
a System of Many Particles" 

V. P. SILIN 
P. N. Lebedev Institute of Physics, 

Academy of Sciences, USSR 
(Submitted to JETP editor February 7, 1955) 
]. Exper. Thecret. Phys. USSR 28, 749-750 

(June, 1955) 

I N considering the correlation of identical 
particles, one should distinguish between the 

correlation of particles which are in the same spin 
state and the correlation of particles in different 
spin states. In reference 1 an approximation to the 
binary distribution was used appropriate for the 
calculation of the correlation of identical particles 
in the same spin state. Strictly speaking, this is 
realized only in the case of particles having no 
spin. Hence the result~ of reference 1 are 
completely valid in the case of spinless Bose 
particles. However, in the case of electrons, for 
example, it is necessary, generally speaking, to 
make several further considerations. 

Let p<+>(q~, q 1) and p<->(q~, q 1) be the density 
matrices for electrons with spin projections + Y:! 
and-Y:;, respectively. For particles in the same 
spin state, the coordinate part of the wave function 
is anti-symmetric. Hence the binary density 
matrix can be approximated as follows: 

p~+.+> ( q~, q~; ql' qz) = p<+>( q~. ql) p<+> ( q~. qz) (l) 

In the case of particles in different spin states, 
the coordinate part of the wave function is sym­
metric; therefore* 

<+ -) ( ' ' <+> ' Pz ' ql' qz; (ql, qz) = P (ql' ql) p<-> (q~, qz) (2) 

+ <+> ( ' (-) ' P ql, qz) P (qz, ql). 

Relations (l) and (2) allow one to obtain the 
following equation for the quantum distribution 
function{<+> (q,p) of an electron with a positive 
spin projection. (The notation used is that 
adopted in reference 1): 

af+> p at<+> i 1 --+---+--iJt m aq t~ (27t)3 

(3) 

x ~ dq'd;dp'dp" [ u(j q- q' + h2:./) _ u (/q _ q' _ n} /) 

x { i;<P"-p> t<+>(q. p") u<+> (q', p'Ht<-> (q';p')J 

[ - (P' + p" ) + exp i-.. \--2-- p 

+ i (q' -q~(p'- p") J j<+> ( q ~ q' - ~:.' p') 

x[t<->(q ~ q' + nz 'p") 

-j<-) (q ~ q' + 1i:' p")]} = 0. 

The equation for r<-> is obtained from Eq. (3) by 
making the substitutions (+)--+ (-), and(-)--+(+). 
Being interested in the fluctuations of the density, 
let us look at the equation for the function 
f = f (+) + f <->. This equation is: 

of P of 
(jf + m aq 

(4) 

i 1 r - [ (I 1i~ I ) + t~ (:?.;ja) dq'd-..dp'dp" u q- q' + 2 

- u( lq- q'- n2~ !)] x {/; <P"-P> f (q, p") f (q', p') 

<D (q + q' _n:. p') v <D(q + q' ' n:. ") 
- 2 4' " 2 1 4•P 

. [ - ( p' + p" - p·) x exp h . 2 -

+ i (q'- p) (p' - p") I 1i ]} = 0, 

Where <P = f (+)= f <->. Equation (4) differs from 
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the corresponding equation in the seHconsistent 
field approximation by the presence of terms 
containing <1>. If, in the equilibrium state 
f (+) = f <->,then upon linearization of Eq. (4) the 
terms containing <I> contribute nothing whatever. 
Therefore the vibration spectrum in this case 
coincides with that obtained in the selfconsistent 

field approximation. In the case where t<->= 0, the 
results of paper 1 are obtained. 

However, in addition to density fluctuations, for 
particles with spin , new excitations arise, 
characterized by the function <I> and similar to a 
spin wave. The equation for the function <I>, which 
is gotten from Eq. (3), is: 

aa> p oa> 
(it+lilaq 

(5) -
+ ~ <2~)3 ~ dq' d:;dp' dp" [ u (I q - q' + n2" I) 

-u (I q- q'- n; I)] X { /r(p'-p) a> (q, p") /(q', p') 

-a> (q ~ q' + nz 'p") t(q ~ q'- nz' p') 
[ .- (p' + p" ) i(q'-q) (p'- p")]"}- 0 

X exp l '< --2-- P - n - . 

Note that for particles with spin one, one should 
write the opposite sign in front of the curly 
brackets in Eqs. (3), (4) and (5). If <I> = 0 in the 
equilibrium state, then upon linearizing Eq. (5) 

"k ikq I= fo + cpke' q' a> = <Dke 

we obtain the following equation, describing the 
spin fluctuation**, 

a<~> It ikp i , < I P - P ,I ) f 
at+-;;- <Pit ±-h<l>lt J dp 1.1 ---:;z- 0 (6) 

-hk i -hk 
X ( P,- 2) +i;fo ( P -2) J d P, v 

p- p' , 
X ( I --I ) <l>lt ( p ) = 0 . -n 

The upper sign goes with spin ~. the lower with 
spin 1. For the case of spin 1 and the temperature 
equal to zero, f0(p) = n 0o(p). In this case the 

solution to Eq. (6) is 

. 7tk 
.<~>lt (p) =e-•cuto(p-2)c(k), 

where 

Thus the spin excitation spectrum of a degenerate 
Bose gas of spin one particles looks like the 
spectrum of noninteracting particles. Consequently 
one can say that (insofar as it is possible to 
consider liquid helium as a weakly ideal gas) the 
superfluidity of helium is explained, apparently, 
not only by the Bose statistics, which the He 
atoms obey, but also by their lack of spin. 

In conclusion, I wish to thank Professor V. L. 
Ginzburg for a discussion of the results. 

* For spin one particles, one should take the sum in 
Eq. (1) rather than the difference; and in Eq. (2) the dif­
ference rather than the sum. 

** Such an equation is gotten for f<-l in the case where 
f0(-) = 0, which corresponds to the case of a system of 

particles whose spins in the ground state are oriented in 
one direction. In contrast to the ordinary theory of spin 
waves, Eq. (6) permits the calculation of the interaction 
not only with nearby particles, but also with those 
distantly situated. 
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T HE experiments of scattering of high energy 
particles point to the presence of non-central 

forces in the interactions between nucleons. The 
presence of such forces results in polarization of 
beams of the scattered particles. The magnitude 
of this polarization is experimentally determined by 
means of the measurement of the asymmetry in 
double scattering. The value of asymmetry is 
generally determined from the equation: 

I (6, cp = 0°) -I (6, cp = 180°) 
e (O) = I (6, cp = 0°) +I (6, cp = 180°) ' 

where I ( (), cp = 0) and I ( (), cp = 180 °) are the 
numbers of particles scattered in second scattering 
at angle ()to the left or right of the direction of 
motion of the polarized particles. 

At the present time a large number of experiments 
·is devoted to the observation of polarization of 


