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Here F is the free energy, S the entropy, C the 
heat capacity excited in the superconducting 
state. We thus obtain the correct temperature 
dependence for C . If the value of the velocity of 
the excitation, v = Hkml y 4rrmnso"" l05cm/sec 

is substituted in the expression for the heat 
capacity, then the correct order of magnitude .is 
obtained . The correct value for the electromc 
heat capacity is obtained without the introduction 
of the concept of a large dielectric permeability. 

If the particles described by the "effective" 
wave function obeyed Fermi statistics, then the 
velocity of the phonon type would have been 
l08cm/sec. Consequently the calculated values 
of the thermodynamic functions are significantly 
less than those observed in the superconducting 
state. Moreover, for very small values of the 
parameter oc (for low concentration of superconduct­
ing electrons), excitations of the Fermi type would 
arise. Such excitations lead to the appearance of 
a linear term in T in the expression for the heat 
capacity. 

In the calculation of the interaction, the linear 
parameter o enters characteristically. We assume 
that destruction of the superconducting state by 
the thermal vibrations of the lattice takes place 

when A "" o, where A is the wavelength 
max max 

which corresponds to the maximum number of 
phonons for a given temperature. Following the 
work of De Launay4 , we assume that 

A T""hs/K, 
max 

where s is the velocity of sound in the lattice. We 
then get for the critical temperature the expression 

KTk ""hsfo.,(HK,M/y4rrmn80 )s, 

from which it follows that T k"" 1° and TM~ = const. 
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1 FHOM the system of integral equations for 
• Green's function in the presence of external 

sources of a photon field, one can show the rela-
tion* 

a-1 (p, p' + s)- a-1 (p- s, p') = sl'-r 1'- (p, p', s). (l) 

Equation (l) is a generalization of Ward's 
theorem, and, insofar as it follows from the exact 
equations, we shall in the future make much use 
of it. The system of renormalized equations for 
the Green's function in quantum electrodynamics 
may he written, to order e 2 , as follows (we retain 
the notation of paper 1): 

e2 (2) 
f'0 (p,p-l,l) =Yo+ rr:i 

X ~ { r 1'- (f, p- k, k) G (p- k) r 0 (p- k, p- k- I, l) 

xG~-k-0~~-k-~ p-~-~ 

_ r~'-(po, po -k, k) a (po -k) 

X ra (pO- k, pO- k, 0) G (p0- k) 

x r .. (p0 -k, p0,-k)}D~'-"(k)d'k, 

aa-1 (P) 
iJpp.-= r I-' (p, p) or a-1(p)- 0 -1 (p _ k) (3) 

= k~-'r~-' (p, p- k, k), 

an-l (k2) e2 

~·-. - = 1 + e2P= 1 + Brr: Sp 

·l f iJ [ iJG (p- k) ] Xj \.Irk .. r~'-(p,p-k,k) ok.. r~'-(p-k,p,-k) 

(4) 
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ko• = 0, Po• = m2. 

The boundary values forD and G are: 

ko.D (k~) = 1. (5) 

These equations forD and G differ somewhat from 
those in reference 1, and are revised so as to 
satisfy exactly Ward's relation. This allows a 
significant simplification in further calculations, 
such that we need not seek the so-called "small" 
corrections.(See reference 1). Let us look for the 
asymptote of G and D, at large momenta, in the 

form: 

A k2 
a-1 (p) = a: (p2) p. n-1 W> = d W> • (6) 

From Eq. (3) it follows that 

r ~'- =a: (f) Y ~'-' (7) 

where f is the largest of the momenta. 
As a consequence of Eq. (3), Eq. (2) becomes a 

linear integral equation in oc. After a simple 
calculation, we obtain from Eq. (2) 

iJa: (~) e2 ( p2 ) ---ar = 47t a:(~) d1 (~). ~= In - m2 (8) 

with the boundary value 

a: (0) = 1. (9) 

From Eqs. (8) and (9) we get 

a:(~)= exp {- :; } d1 (z) dz}. (10) 

To this approximation, as a result of Eq. (3), 
oc completely drops out of the expression for the 
polarization operator P, which goes into the value 
given it in perturbation theory, i.e., one uses the 
free particle values of G and 1. As the result of 
a simple calculation, we obtain from Eq. (4) 

1 e2 ( p2) 
(j = 1 - 3:t In - mz . (ll) 

The asymptotes obtained coincide with those 
previously gotten by Landau, Abrikosov and 
Khalatnikov 1 . 

2. We shall show several general properties of 
renormalized theories. 

I. The radiative corrections to the Green's 
function of Fermi- and Bose- fields, before 
renormalization, are equal to zero at infinite 
momenta. Indeed, let us look, as an example, at 
the Green's function for a photon. According to 
reference 2 , 

Since the theory is normalized, it follows from 
Eq. (12) that D (p2) = 1 (p 2 -+ oc ), i.e., the 
radiative corrertlons actually vanish. 

II. If the derivative of the polarization operator 
with respect to the square of the external momentum 
is infinite for small momenta (and this occurs in 
existent calculations), then the renormalized charge 
is equal to zero. In the renormalized equations, 
where the self-action is absent and the charge is 
considered finite, this difficulty is manifested in 
the change in sign of the Green's function at large 
momenta, whereupon a fictitious singularity 
arises. The reason why the difficulty crops up 
lies in the fact that, since the self-action is 
infinite, the law of interaction at small distances 
(r = 0) is really not correct; in the renormalized 
equations the self-action is not used, but is 
effectively taken into account by the introduction 
of renormalized masses and charge. Considering 
the renormalized quantities as finite and equal to the 
experimental values, we correct the self-action 
(or the interaction at r = 0); however, the inter­
action at r -+ 0 remains indefinitely increasing -
leading to a contradiction to the finiteness of the 
self-action. If we use, instead of the renormalized 
charge, its theoretical value, then the Green's 
function does not change sign, but the 
renormalized charge itself proves to be zero. 
Actually, (see reference 3), DFC is related to the 

polarization operator in the following way: 

1 
DFC = k 2 (1 + e2 [0 (k2) + 0 (0))) • (13) 

1 
n (k2) = 6k2z1 Sp 

X ~y~'-G(p +k)f~'-(p+k,k)G(p)dtp. (14) 

If II (0) is infinite ** (and since, according to (l), 
II (k 2 ) approaches zero as k 2 -+ oo ), then DFC 
changes sign, going through a pole at arbitrary 
finite e 2 • According to theory 

e2 
e2 = o 

1 + e~ n (O) · 
05) 

With this meaning for e 2, D FC nowhere changes 
sign, but e 2 is equal to zero for any "bare" charge 

2 eo. 
In the case of small "bare" charge, the asymp­

tote adduced in section I is exact and the 
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renormalized charge is equal to zero. In the case, 
however, where the "bare" charge is large (which 
apparently happens in quantum electrodynamics 2 ), 

all the diagrams of higher order than e2 , not 
considered in section I, become extremely important 
and may radically alter the asymptote found. 
Using Eq. (l) and property I, and neglecting terms 

of the type ( y vY J.L- y ~ 1) f (p 2) in the expression 

or / for __ J.L_ , one can show that 11 (0) remains 
ox'IJ k = 0 

infinite in the general case-f. Therefore, it seems 
likely that in quantum electrodynamics the 

renormalized charge is equal to zero. Since the 
experimental charge in quantum electrodynamics is 
small, one could eliminate the difficulty of the 
zero charge by a correction to the interaction at 
very large momenta, and a calculation of gravita­
tional effects could make it, generally speaking, 
not inconsistent with the mathematical theory5 • 1 

* The proof of this relation will be given separately. 
** II (0) is always~ 0. 
-fA discussion of the use of the fact that II(O) is 

infinite is also given in reference 4 
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AS has been shown by Ginsburg 1 , only the 
utilization of coherent radiation in an undula­

tor 2 '3 , makes it possible to obtain considerable 
radiated power. At the same time, the power 
radiated from an undulator is directly proportional 
to its length (see, for example, reference 2); 
therefore it is desirable to increase the length of 
the undulator. However, these two contributions 
to the power radiated from an undulator are in 
contradiction with one another. As the electrons 

pass through the undulator, the conditions for 
coherent radiation become worse, in view of the 
spreading of the bunch. The resolution of this 
contradiction appears to be the imposition of a 
restriction on the length of the undulator. 

Consider the definiteness, a spherical bunch of 
N electrons, in a coordinate system moving with 
the center of the bunch. Making use of the integral of 

mv 2 e 2 N e 2N 
motion __ r + -- = -- , we find that the 

2 r r 0 

increase of the radius of the bunch by a factor p 
takes place during proper time 6.,. 1 according to 
the relation 

A 1 • /-;n: 
1: = e- v 2N or P <P- 1> <1> 

.+ ln(Vp + Yp-1)Jr~1,, 

where r 0 is the initial radius of the hunch, with the 
initial rate of expansion assumed to be zero, and m and e 
are the rest mass and charge of the electron, 
respectively. 

The condition for coherent radiation is that the 
dimensions of the electron bunch be small in 
comparison with the wavelength of the radiated 
waves. In order to obtain the wavelength ,\ in the 
laboratory system of coordinates, it is necessary 
to generate the wavelength .\/y 1- f32 in the 
coordinate system (with velocity v = c f3 ) moving 
with the center of the oscillating hunch. In view 
of this, the condition for coherence is well ful­
filled when r0 "' ,\, and is completely violated 

when p "'E/mc 2 • When, as was assumed in 
references 1-3, the fields in the undulator are not 
too large, the velocities of the electrons are small 
with respect to a coordinate system moving with 
the center of the oscillating bunch, and therefore, 
an interval of proper time of the bunch is 
approximately equal to an interval of time in the 
coordinate system moving with the center of the 
oscillating bunch. Therefore, on the basis of 
Eq. (1), the time for complete loss of coherence in 
the laboratory system of coordinates is 

(2) 

Denoting the length of the spatial period of the 
field in the undulator by l , and taking into ac-

count the equality ,\ "' l o( m; 2 Y, we find that the 

number q of spatial periods of the field in the 
undulator ml}st in any case be no greater than 

c ym .r 106 .r-
qmax = - - f A:::=::-- f A (A em). 

e 2N VN (3) 


