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TABLE 

No. of U No. of cases of Probability of No. of cases No. of cases capture of 1T- U fission Trial of fission of o~stoppingof nu~ei P':_r17 mesons by U 2 U per cm2 1T mes2ns per em X 10 
em 

nuclei per em 

I 25 7050 6.2 ± 0.6 \ 

I 

98± 10 0.25 ± 0.05 

II 21 5040 5.7±0.2 64± 5 0.33 ± 0.08 

super-centrifuge ( 20,000 revolutions per minute). 
After 20 minutes of centrifuging, the grains of AgBr 
settled almost completely, covering the walls of 
the container. The resulting precipitate of grains 
of AgBr and the leftover gelatin were analyzed f~r 
uranium content. The results lead to the conclusiOn 
that all the uranium penetrating into the emulsion 
during the soaking is found in the gelating, and that 
the adsorption of uranium on the surface of AgBr 
crystals does not occur. Therefo~e, in.determi.ning 
the number of"- mesons interacting w1th uramum 
nuclei, it is necessary to count only those mesons 
which stop in the gelatin ( "-'42% from our data). 

Assuming further, in agreement with Fermi 5 , that 
the probability of capture of a slow 1T- meson in a 
chemical bond is proportional to the atomic number 
Z, it is possible to write the following expression 

for the number of 7T- mesons captured by the nu
clei of uranium atoms adsorbed by the gelatin, 
under the condition that the 17- mesons are stopped 
with uniform distribution throughout the depth of 
the emulsion: 

Here N 0 is the number of 1T- mesons stopped per 
square centimeter of the layer of emulsion; Z i ,Ni 
are the charge and number of nuclei of the ele
ments composing the gelatin ~r square centi
meter of the layer of emulsion. 

Two groups of measurements were carried out. 
The data, reduced to tabular form, are for a layer 
of emulsion 100 microns thick. 

Thus the results of the present work lead to the 
conclusion that on capture of 7T- mesons, uranium 
nuclei undergo fission in 30% of the cases.. How
ever, it should be noted that this conclusion is 
valid only if the assumption is correct that the 
probability of capture of "-mesons by the different 
nuclei in the mixture is proportional to the atomic 
number. 

The results of the present work were obtained 
in Deeember, 1953. There are available at the 
present time in the literature 6 determinations of 
the probability of fission of the uranium nuclei 
upon capturing 17- mesons which differ somewhat 
from our values. In the referenced work the proba
bility of fis!;lion is determined to be 0.18 ± 0.06. 

In conclusion, the authors wish to express their 
apprec:iation to Professor N. A. Perfilov for valu
able instruction and discussion of the results of the 
work. 
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1 . h . OUR previous article contams t e computatiOn 
of the effective cross section for scattering 

of fast neutrons by the black nucleus, which has 
the form of an ellipsoid of revolution and a spin 
equal to zero. We shall examine the established 
results under the assumption that before the scat
tering interaction the nucleus is found in a partic
ular state. 
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The differential cross section for an excited 
rotational state of the nucleus Ylm ( x, ¢) is 

determined by the formulas (6), (7) of reference l: 

crlm (0) = 4? (kk.~)t lfm (6), ~- (l) 

11 (6) = !_w/ (21 + 1) (1-m)! 
m 8 r (t + m)! 

1 21t 

X \ \ dxdtp~ (x) p;n (x) 11 (t) cos mtp; 
.) .) t 

-1 0 

~ (x)= V z 2 + (1- z2) x2• 

From this point it is not difficult to obtain the 

following expression: alm (e)=!= 0, provided both 
l and m are even; alm (e) = 0 in the remaining 

cases; in the case of a spherical nucleus, the 
rotational states are not excited: 

[/.'! 

0.2 
[J.I 

The differential cross section for elastic scattering 
is obtained from formula (l) with l = m = 0: 

<ro (6) = i_ (kb)4 (2) 
"2 k2 

1 tt/2 

[ \ \ dxdcp~(x) J1 (kb6 V~2 (x) cos2 tp + sin2 cp) ]2· 

X ~ ~ kb6 V~2 (x) cos2 cp + sin2 cp 

In the case of a spherical nucleus ( z = l) this 
gives rise to the well-known expression 2 

cro (6) = (kR) 4 [J1 (kRO)] 2 
k 2 kR6 . 

In accordance with Eqs. (9) and (ll)\ the 

summed cross section for scattering into angle e 
with distinct excited rotational states, including 
elastic scattering, is determined by the formula: 

(3) 

r./2 1 

X\ \" dcp dx~2(x) [J1 (kb6 V~2 (x) cos2 cp + sin2 cp)) 2. 
~ ~ kbf) V ~2 (x) cos2 cp + sin2 cp 

For a spherical nucleus, as (e) = a o (e). 

....... 
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FIG. 1. The function a 0 ,(e) for z = 1 (dotted line) and 

z = 2 (solid curve) ; kR = 10. 
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FIG. 2. The function a8 (e) for z = 1 (dotted line) and 
z = 2 (solid curve); kR = 10. 
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In Fig. l is shown the angular distribution of 
a 0 (e) for neutrons with energy kR = 10 elastically 
scattered by a non-spherical nucleus ( z = 2 ). For 
comparison there is shown the angular distribution 
of a 0 (e) for a spherical nucleus ( z = 1) of equal 

volume. From Fig. 1, it can be seen that deforma
tion of the nucleus does not make any radical 
change in the angular distribution for elastic 
scattering. As in the case of scattering by a 
spherical nucleus, the angular distribution of a0 (e) 

has a series of maxima and minima, where, further
more, the cross section becomes zero at the 
minima. 

Figure 2 shows the summed cross section as (e) 
for the non-spherical nucleus ( z = 2) for energy of 
the incident neutron kR = 10. For comparison 
there is shown a curve of as (0) for a spherical 
nucleus ( z = l) of equal volume. From Fig. 2 it 
can be seen that deformation of the nucleus 
changes the function as (e) significantly. In the 

case of a spherical nucleus, the angular distribu
tion of as (e) retains the series of maxima and 
minima, whete, furthermore, the cross .section 
as (e) becomes zero at the minima. But in the 
presence of observable deformation, the angular 
distribution of as ( 0) no longer has maxima or 
minima, and does not become zero. In the case 
of significant deformation, the function a (e) de-

s 
creases monotonically with increasing e. 

u5/rrR 2 

a0 /rrRz 
l.f 

0.9 

0,8 

0.5 r.o 

From the last it follows that the probability of 
excitation of the l th rotational level of the nucleus 
decreases rapidly with increasing l. Therefore, the 
effective energy spread of the neutrons undergoing 
scattering with excitation of distinct rotational 
states is found to be of the order ~f = h2l (l+1)/2/ 
where l "'2. For heavy nuclei, with z == 2, ~ f ' 

"'100 kev. The angular distribution of as (e) is 
convenient for comparison with experimental in
vestigations of angular distribution of elastic 
scattering, provided that the energy resolution of 

the experimental detector is of the order of ~f. 
In accord with formulas (9)- (ll) of the previous 

article 1 , the total cross sections at• ac, as are 

fonnd to be independent of the energy, whereupon 

z-'1, ( z2 1-r-2--
C£ (z) '= -- 1 + arcsin z - 1) 

2 V z2 1 z , z>.-1; 

C< (z) = z_. _ 1 + z Arsh - z , z < 1, --';, ( ~ v-1 - 2 ) 

2 V 1- z2 z 

where R is the radius of a spherical nucleus of 
equal volume. 

Given Eq. (2), the total cross section for elastic 

scattering is determined by the expression: 

(5) 

1,5 2,5 z 

FIG. 3. Total cross section as (dotted line) and 

a 0 (solid curve). 
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The cross section a 0 is practically independent 

of energy. Figure 3 shows the total cross section 

as and a0 for different deformations z of the 

nucleus. The total cross section for excitation of 

the l th rotational level of the nucleus differs from 

zero only for even l and diminishes quickly with 
increasing l. For deformations of the nucleus which 

are not too great and for l ;::, 2, 
a2 

crl ~ 21tb2 _L_ 
22ft ' 

where az is the coefficient of resolution 
00 

~ (x) = ~ a1x 1• 
l=O 
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oNE examines the scatteringof fast neutrons 
by the black nucleus, which has the form of a 

body of revolution and spin equal to zero. The 
solution of the problem of scattering in the adi
abatic approximation 1 may be obtained in the fol
lowing manner. The o/-function of the system 
satisfies the Schroedinger equation: 

(Ho + T) ljJ = E<li. (l) 

where H 0 is the Hamiltonian operator of the 
system consisting of the neutron and the fixed 
target nucleus; T is the orerator for the rotational 
energy of the nucleus. It is assumed that the 
energy of the incident neutron is significantly 
greater than the rotational energy of the nucleus. 
For this reason, it is possible , in the zero ap
proximation in Eq. (l), to drop the operator T and 
set up the o/-function in the form: 

<J!=uk(r, w) 'Pn,((l.>), (2) 

where H0uk = Ekuk; T¢n = Encpn; Ek is the energy 
of the incident neutron; En represents the rotational 
energy levels of the nucleus. The operator H 0 

operates only on the radial coordinate r of the 
nucleus, and does not operate on the angular 
coordinate c:u, which determines the orientation of 
the nucleus. By this means one examines, in the 
adiabatic approximation, neutron scattering on the 
fixed target nucleus, which was in the rotational 
state ¢n (c:u) with energy En prior to the scat-

o 0 

tering interaction. 
The operator for the rotational energy of the 

nucleus has the form 2 

where ~ c:u is the Laplace operator on the unit 
sphere, I is the moment of inertia of the nucleus 
with respect to the principal axis, parpendi cular 
to the axis of symmetry. The eigenfunctions 
¢n ( c:u ), describing the rotation of the nucleus, ap

pear as the spherical functions Ylm ( c:u ); the rota
tional levels of the nucleus are determined by the 
formula: 

e: _ n2 l (I+ 1) . 
l- 2! ' (3) 

When r approaches oo, the o/-function (2) has the 
form: 

[ 
ikr ] 

tjl- eikr + ~f(w, 0) 'Pn, (w), (4) 

where f(c:u, U) is the scattering amplitude on the 
fixed target nucleus in the direction U, dependent 
on the orientation c:u of the nucleus. Resolving the 
quantity f( c:u, U )¢ ( c:u) into a series by func-

no 
tions ¢n ,(c:u) we obtain: 

., )hr] y ~ e'.<r<p (w) -"- F (Q) ( \) n, + r nn, 'Pn c.: • 
(5} 

n 

where 

The ljl-function (5) describes the system before 
the scattering interaction as well as the scatter
ing processes, as a result of which the nucleus is 
left in distinct rotational states ¢ (c:u ). Energy 

n 
is not conserved in the approximation being used, 
because the particles, scattered with distinct ex
cited rotational states, all have the identical 
wave vector k. 


