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We give a method of determining the distribution functions of impulse amplitudes in an 
electron multiplier, if we know the probability that n secondary electrons are produced in 
one elementary act. We answer the question of how to determine the probability of this 
elementary event, if we know experimentally the distribution curve of the impulse amplitudes 
in the multiplier. 

I In this article we consider the following two 
• problems: 
l) Given a distribution P ( v ), where P ( 0 ), 

P ( l ), P ( 2 ), . . . are the probabilities that the 
collision of an electron with a multiplier electrode 
leads to the appearance of 0, l, 2, . . . secondary 
electrons. We shall determine the probability 
P N ( v) that v electrons are ejected from the Nth 

electrode if a primary electron strikes the first 
electrode 1• In addition, we shall consider the 
quantity p(';/ ( v ), which denotes the probability of 

producing v electrons at the Nth multiplier elec
trode, if there are k primary electrons. 

2) Given a distribution PN (v) of electrons, ap-

pearing at the Nth multiplier plate. We shall 
determine the distribution P (v), of the electrons 
emanating from one electrode, which leads in N 
steps to the given distribution P N ( v ). 

2 We begin by considering the probability dis
tributions P 2 ( v ), P 3 ( v ), . . . obtained from the 
primary distribution P (v). Let us extend the defi
nition given above to the cases N = 0 and N = l by 
writing 

'I= 1, (l) 

v=f.=1, 

Next we introduce the generating function G N (u) of 

the distribution P N ( v ): 

co 

ON (u) = ~ uv PN (v). 
(2) 

v=O 

where G (u) is the generating function of the 
initial distribution P (v ). 

We construct a recurrence formula for GN (u) in 

the following way. Consider the case where not 
one but k > l particles impinge on the first elec
trode. Designate by p(';j ( v) the probability that 

k primary electrons yield just v electrons at the 
Nth electrode. We have 

pYJ+l) (v) = ~ P<J) h) P)!) h). 
v,+v 2=v 

Multiplying this equation by uv and summing with 
respect to v, we obtain in the usual way the cor
responding generating function 

oYJ+l) (u) =ow (u) o<J;/ (u). 

Hearing in mind that c<~> (u) = GN (u) by definition, 

and setting l = l, k = l, 2, 3, . . . , we obtain, 
in general, 

oYJ> (u) =(ON (u))k, k = 0, 1, 2, ... , 

where G0 (u) = l is the generating function «h a 
distribution such that not a single electron falls 
on the multiplier, so that p<~l = 0, v ~ 0. 

(4) 

To derive a recurrence formula for G N (u), we 
observe that v particles will appear at the Nth 
stage if at some intermediate stage, say the k th, 
there are f1. particles, and if they give rise to just 
v - f1. particles at the remaining N - k stages. The 
probability of such an event for a fixed value of 
/l is 

In particular, we have 

0 0 (u) = u, 

Oll (u) = ~ uvP(v) = 0 (u), 
(3) Summing over all possible intermediate values of 

f1., we obtain for the total probability 

1 L. Janossy, Acta Mathematica 2, 165 (1951) PN (v) = ~ Pk (p.) P%~k (v). 
p.=O 
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Multiplying the last equation by u11 and summing 
over v = 0, l, 2, , we get, with the aid of 
Eq. (4), 

co co 

ON (u) = ~ uv ~ Pk (!1) P%-~k (v) 
v=O fl=O 

co 

= ~ Pk (!-') (ON-k (u)t. 
1'-=0 

Moreover, using Eq. (2), we have 

ON (u) = ak ON-k (u), (5) 

where we have written for brevity GkGN-k(u) in

stead of Gk [ GN-k (u) J. Setting k = l in Eq. (5)lwe 

obtain in particular 

whence 

ON (u) = aaN-I (u), 

0 0 (u) = u, 0 1 (u) = 0 (u), 

0 2 (u)=00(u), ... , 

ON (u) = aa . .. a (u). ----N 

In this way we have obtained the successive 
generating functions G 1 (u), G 2 (u), • • . by 

iterating the initial function. 
3. Thus, ~e can calculate GN (u) for a given 

G (u); the corresponding P N ( 11) is obtained by a 
complex integration, namely 

PN (v) = 2~i ~ u-v-IQN (u)du. (6) 
U-=0 

To simplify the calculations, it is convenient to 
introduce 

u = ev, ON (u) = exp {HN (v)}. (7) 

Transforming Eq. (5) with the help of Eq. (7), we 
obtain 

In this way, the quantities H N' i.e., the 
logarithmic generating functions, can be calculated 
in just the same way as the usual functions GN. 

Moreover, Eq. (6) can be rewritten in the form 

PN(v)= 2~i ~ exp{-vv+hN(v)}dv, 
(vo) 

(8) 

where the integration is to be carried out on a 
suitable path in the complex plane, a path which 
intersects the real axis at v = v 0 • The latter in-

tegral can be calculated to a good approximation 
by the method of steepest descents. Then, desig
nating the first term of the well-known asymptotic 
expansion of the function P N ( v) by PX. (11), we 

obtain 
v=H~(v), 

PN (v) ~ P~ (v) 

= exp {- vv + HN (v)} I (21tH" (v))'1>, 

(9) 

where we have written v instead of v 0 • The prime 

designates differentiation with respect to v; the 
relation (9) furnishes an approximate parametric 
representation of P N ( v ), where v plays the role 

of the independent parameter. 
Thus our problem reduces to tabulating the func

tions H N (v), H ~ (v), and H; (v). 
Calculating HN (v) by iterations, we can obtain 

H~ ( v) and H N (v) by numerical differentiation, 
and then , with the help of Eq. (9), we can cal
culate v and P N ( v) as functions of the independent 

parameter v. The fact that arbitrarily chosen 
values of v do not generally coincide with 
integral values of v does not matter, since, in the 
cases of practical interest, v takes on very large 
values. 

4. Before giving a practical method of cal

culation, we shall introduce simple formulas for some of 
the moments of the distribution P N ( 11 ). The ex-
pressions 

(
dk H N (v))' - (N) 
--k- -Kk 

dV V=O 

(lO) 

are the so-called semi-invariants of the distribu
tion. In particular 

K~N) =liN , the ~ean value of v, 

K(~)= (v-IIN ) 2 , the variance, 

K~N) = ( v-~N ) 3 , the mean cube of the deviation. 
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Setting .k = N - l in Eq. (5), differentiating with 
respect Ito v, and then setting v = 0, we obtain 
(after some simple calculations) recurrence 
formulas for the moments K( Z) 

KiN) = pN, K~N) = Q p2N- PN 
p2-p ' 

(ll) 

where we have set 

K(l) -Q 
2 - ' 

The first of the formulas (ll) shows that the 
mean number of electrons at theN th stage equals the 
product of the mean multiplication factors p 
pertinent to the separate stages. The second 
formula shows that K~N) !(K{N) ) 2 "'Q/(p2- p) 
does not depend on N if N » l, p > l. This 
indicates that the spread of the distribution PN (v) 

with respect to its mean value does not change 
greatly as N increases, i.e., if we were to plot 
P N ( v) for v = l, 2, 3, . . . , changing the scale 

so that the mean values coincide, we would get 
distributions with the same spread. In other 
words, the distributions 

(12) 

have identical mean values, and moreover, the 
same spread. This agreement of the distributions 
does not carry over for the higher moments; the 
third moments of these distributions will differ 
considerahl y. 

S. Computing the iterations. The iteration 
process can he given a simple geometrical inter
pretation (Fig. l ). On the ( u, U) plane we have 
drawn the curve M, corresponding to the formula 
U = G (u ), and the straight line L corresponding 
to the formula U = u. There are two intersections, 
one at point A, where u = U = l, and the other at 
point B, where u = U = u1• There are two and only 
two such intersections if 

1) 0' (I) = p > 1, 

2) 0(0) = P(O)>O. 

Fig. l. Geometrical representation of the iteration 
process. 

In fact, at the point A, M has a greater slope than 
L, and at the point C, where u = 0, U = P ( 0 ), M 
lies above L; thus. there must he at least one 
intersection, say at u = u 1' in the interval 0 < u 1 

< l; moreover, inasmuch as G (u) has only positive 
derivatives and is concave downward, there can 
only be one such intersection. 

Beginning now with a value of u, for example, 

l - c, such that u 1 < u < l, we find the correspond
ing point M 0 on the curve M. Drawing a horizontal 
through M 0 , we obtain on the left an intersection 
L 0 with the line L; the coordinatesof L 0 will be 

u = U = G ( l - £). Now, dropping a vertical 
through L 0 , we intersect the curve Mat the point 
M 1' with coordinates u = G ( l - £), U = GG ( l - £). 
Repeating this procedure, we obtain a broken line. 
The abscissae of the points M0 , Ml' M2 , 

(on the curve M) will be 

1-e, 0(1-e), 00(1-s), ... , 

i.e., the iterations of l - l. 

As the point B is approached, the segments be
come shorter and shorter, and it can he seen that 
the sequence Gn ( l - d, n = l, 2, 3, · . • , 
monotonically converges to the value u 1• 

In the same way, we see that , starting with a 
value 0 < l- £ < u 1, we obtain an increasing 

sequence of points, which also converge to the 
limit u 1• Starting from the point u = l + c, we get 
a sequence of rapidly increasing values of u. 

With a little more argument we can show that 
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lim ON (u) = O*(u) = u1 , 0-<u< 1. 
N=ro 

Indeed, in the interval ul < u < l, we have 

U1 <O (u)<u. 

Iterating this N times, we find [since G (u) is a 
monotone function] that 

Thus we see that the sequence 

01 (u), 0 2 (u), ... (13) 

is monotonically decreasing and bounded, i.e., it 
must have a limit. The limit can only be u1. 

Thus O*(u) = u1o 

Furthermore, starting from 

u1 >0(u)>u for ul>u:>O, 

we see that the sequence (13} is monotonically 
increasing and bounded in the specified interval, 
and consequently converges to u 1• Thus 

0* (u) = U1 for 0 ~ u < 1. 

Let us extend the result obtained above to complex 
values .of u, since complex u are of interest in cal
culating the integral (9). 

We have 

ON(u)- ON (0) = PN (1)u + PN (2)u2 + ... ; 
The coefficients are probabilities and, consequently, 
non-negative. We thus have 

I ON (u)- ON (0) 1 ~I ON (i u \)-ON (0) I· 

Inasmuch as the right-hand side of this expression 
has the limit zero for I u \ < l, the same must be 
true for the left-hand side. Thus, we obtain 

0* ( u) = U for I U I < 1. (14) 

6. It is of some interest to determine the size of 
the steps of the iterational procedure in a very 
small neighborhood of the points of intersection A 
and B. Consider the intersection A; in its neigh
borhood the curve M can be replaced to a good 
approximation by a straight line M' with slope p. 

Carrying out the iteration between the two straight 
lines, we see that the abscissae of the steps are, 
to a good approximation, 

1 - e, 1 - ps, 1 - p2s, ... 

Thus, to a first approximation, the distances from 
u = l constitute an increasing geometrical progres
sion (Fig. 2 ). This simple behavior changes for 
orders of iteration such that there is an appreciable 
difference between the directions of the curve M 
and the tangent M '. In most of the interval be
tween A and B, the curve bends away strongly 
from its tangent, and the steps are given by a 
complicated function of their index. Near B the 
steps again approximate a geometrical progression, 
so that for a large enough number k of steps, the 
abscissae are given to a good approximation by an 
expression of the form u1 + P1 c, where p 1 = G '(u1), 

so that 0 < p 1 < l. 

Fig. 2. a. curve, b. tangent; 1. exact steps, 
2. approximate steps. 

From the picture introduced above, we can derive 
a simple practical method of tabulating G N (u) for a 
given value of N. Let us draw, as was done above, 
a broken line M1, L 1; M2 , L 2 , ••• , starting 

within a small neighborhood of the point A, so that 
the abscissa of the first point M1 must be 

u(O) = 1- s, 

where £is positive, but very small. Designating 
the subsequent abscissae by u(l), u(2), •.. , 
we have 

Comparing the k th and (N + k) th steps, we have 

lt(N + k) = ok+N(I- e)= ON(U (k)). 
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Thus, taking k as an independent parameter, we 
obtain a parametric representation of the function 
GN (u); indeed, we have 

u = u(k), GN(u) = u(N + k). 

Consequently, the tabulation of GN (u) consists in 
reading the kth abscissa as the value of the vari
able, and the ( k + N) th abscissa as the corres
ponding value of the function, and repeating this 
operation for k = 1, 2, . . . , etc. 

Tabulation by the means just indicated has, 
nevertheless, the defect that the steps are compara
tively large in the intermediate region between A 
and B. However, to get a more exact tabulation, 
we can construct several broken lines with 
mutually related steps. A more staisfactory pro
cedure consists in interpolating between the first 
and second steps with a geometrical progression; 
in this way, we can d~termine a certain value u 
between u(O) and u(l), by setting 

u(x) = 1-pxs. 

Starting from an iteration of the form 

u (x + k) == 0 11 (u(x)) 
for 

X= 0; 0,2; 0,4; 0,6; 0,8; k = 1, 2, ... , 
we determine the function 

a.:+ll (1 -- s) = Gk (u (x)) 

for the step 0.2, so that the parametric representa
tion of GN ( u) can be written as 

u = G~+x(1- s), GN(U) = a;.+~tN(1- s). (15) 

We have tabulated G10 (u) by the means indi
cated, assuming that P ( 1.1) is a Poisson distribu
tion. Thus, taking 

vP 
P(v) = e--p - 1 v. andG(n) = exp {p(u-1)}, 

we found that for the indicated distribtuion, with 
p = 5, 

u1 = 0.006997. 

Then, starting form ( = 2.358 X w- 7• and dividing 
the first interval u(O), u(l) into five parts, we ob
tained Tables I and II. In Table I we tabulated 

c:+x( 1 ±c) according to Eq. (15); in Table II we 

tabulated the function G 10 (u) using Table I. 

7. We must now determine the derivatives of 
GN (u). According to the parametric representation 
(15), differentiation with respect to u can be 
carried out as follows: 

dON (u) 

du 
dG:+x+N ( 1 -e) d.x 

dx du ' 

whence the derivatives of GN (u) are obtained in the 
following parametic representation 

dON (u) 

du 
(16) 

dG;,+x+N (1- e) I dG~+x (1- e) 
dx dx 

The dtlrivatives dGk+x (1 - d/ dx can be obtained 

by numerical differentiation of cz+x(l - c). 
Differentiating again, we find 

In differentiating the function dGN (u) I du with 
respect to x, it must be understood that u itself is 
a function of x. Equation (17) is given in the form 
most useful for computation. We also tabulated 
these functions in Tables I and II. 

The functions G N (u) for N = 0, 1, 2, . . . , are 

shown in Fig. 3. It is clear that as N increases, 
the functions rapidly approach their limiting values. 

With the help of the tables given, we calculated 
Pf 0 (v·). In Fig. 4 are shown Pf 0 ( v) and P (v) in 

the units given by Eq. (12); it is clear that the two 
distributions are quite alike. 

8. Below we shall investigate more rigorously 
the properties of the iterations G k (u), and show 

that the method of calculation used earlier in this 
paper leads to a generalization of the iterational 
process. Using this generalized iterational process, 
we shall give the solution of the inverse multi
plier problem, mentioned at the beginning of the 
pae_er. 

9. Iterations of negative index. We can intro
duce G_k (u) as the inverse function of Gk (u). Re
calling that the Gk (u) are monotonically increas

ing functions of the argument u, we see that the 
inverse function is uniquely defined, at least, in 
the interval u1 $ u $1; the function G_k(u) can 
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TABLE I 

e: = 2.35785· to-7 . 
aa~±.t" (1-•l k+x * aak+x (1-e) 

a~+.t" (l+•l ak+x (1-e) o.t" ox 

>5 ~t-•pk+x ~1-• In p pk+x ~t+zpk+.t" -i+elnppk+.t" 

5.0 

I 
0.9993 0.0012 1.0007 0.0012 

5.2 0.9990 0,0016 1.0010 0,0016 
5.4 0.9986 0.0023 1.0014 0.0023 
5.6 0.9981 0.0031 1.0019 0.0031 
5.8 0.9973 0.0043 1.0027 0.0043 

6.0 0.9963 0.0059 1.0037 0.0060 
6.2 9.9949 0,0081 1.0051 0.0082 
6.4 0.9930 0.0112 1.0070 0.0114 
-6.6 0.9904 0.0154 1.0097 0.0157 
-6.8 0.9868 0.0211 1.0135 0.0219 

1.0 0.9818 0.0290 1.0186 0.0303 
7.2 0.9750 0.0396 1.0258 0.0422 
7.4 0.9657 0.0540 1.0358 0.0589 
1.6 0.9531 0.0733 1.0499 0.0826 
1.8 0,9359 0.0989 1.0696 0.1168 

8.0 0.9130 0.1323 1.0976 0.1663 
8.2 0.8824 0.1749 1.1378 0.2398 
8.4 0.8424 0.2276 1.1963 0.3517 
8.6 0.7908 0.2900 1.2831 0.5285 
8.8 0.7259 0.3591 1.4173 0.8227 

9.0 0.6472 0.4281 1.6294 1.3410 
9.2 0.5555 0.4856 1.9917 2.3361 
9.4 0.4547 0.5170 2.6681 4.4319 
9.6 0.3513 0.5086 4.1195 8.9592 
9.8 0.2540 0.4555 8.0150 

10.0 0.1713 0.3666 23.2646 
10.2 0.1083 0.2634 142.3725 
·10.4 0.0654 0.1697 4190.2500 
10.6 0.0390 0.0996 
10.8 0.0240 0.0547 

11.0 0.0159 0.0290 
11.2 0.0116 0.0152 
11.4 0.0093 0.0079 
11.6 0.0082 0.0040 
11.8 0.0076 0.0021 

12.0 0.0073 0.0011 
12.2 

I 
0.0071 0.0006 

12.4 0.0071 0.0003 
12.6 0,0070 0.0001 
12.8 0.0070 
13.0 I 0.0070 .· 
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TABLE II 

k+x-10 a .. (u) 
aa .. (u~5-., o'010 (u) Ka-'" G, (u) 

aa,. (v) .x 5_10 q•o,. ('u)"' 5_, 
au au• ov <tv• 

I 
5.0 0.9993 

I 
1.0007 

5.2 0.9990 0.9992 1.0010 
5.4 0.9986 0.9996 :l.0014 
5.6 0.9981 0.9980 1.0019 1.0010 
5.8 0.9973 0.9966 1.0027 1.0030 

6.0 0.9963 0.9971 L0037 1.0042 
6.2 0.9949 0.9936 1.0051 1.00.56 
6.4 0.9930 0.9914 1.0070 1.0079 
6 .() 0.9904 0.9876 1.0097 1.0109 
6.8 0.9868 0.9837 1.0135 1.0167 

7.0 0.9818 0.9770 1 .0186 1.0229 
7.2 0.9750 0.9688 1.0258 1.0316 
7.4 0.9657 0.9571 0.5491 1.0358 1.0438 
7.6 0.9531 0.9415 0.5340 1.0499 1.0610 
7.8 0.9359 0.9205 0.5195 1.0696 1.0870 

8.0 0.9130 0.8924 0.5031 1.0976 1.1219 0.6455 
8.2 0.8824 0.8551 0.4785 1.1378 1.1725 0.6811 
8.4 0.8424 0.8067 0.4469 1.1963 1.2465 0.7270 
8.() 0.7908 0.7449 0.4062 1.28::l1 1.3573 0.8101 
8.8 0.7259 0.6685 0.3596 1.4173 1.5315 0.9209 

9.0 0.6472 0.5776 0.3031 1.6294 1.8093 1.0975 
9.2 0.5555 0.4749 0.2406 1.9917 2.2844 1.4230 
9.4 0.4547 0.3664 0.1769 2.6681 3.1411 
9.6 0.3513 5.2613 0.1182 4.1195 4.6022 
9.8 0.2540 0.1696 0.0704 8.0150 

10.0 0.1713 0.0989 0.0366 23.2646 
10.2 0.1083 0.0515 0.0165 142.3725 
10.4 0.0654 0.0241 0.0064 4190.2500 
10.6 0.0390 0.0102 0.0022 
10.8 0.0240 0.0041 0.0007 

11.0 0.0159 0.0016 
11.2 0.0116 0.0010 
11.4 0.0093 0.0002 
11.6 0.0082 0.0001 
11.8 0.0071l 

12.0 0.007:~ 
12.2 0.0071 
12.4 0.0071 
12.6 0.0070 
12.8 



ELECTRON MULTIPLYER 527 

sometimes be defined in a larger interval. From 
the definition introduced above, it follows that 

(18) 

for arbitrary integers k and l. 
Iterations of fractional order. We can general

ize the definition of Gk (u) to include fractional 
orders, while retaining the validity of the relation 
(18) for interpolating values of k. The inter
polation can be done by a method like that already 
used in this paper. We shall show that this 
method can be made mathematically rigorous. 

.----r----.----,---,,---Af./1 

tC[lLJ 

Fig. 3. The function GN (u) in the case of a Poisson 

distribution with p = 5. 

We discovered these iterations of fractional 
order in considering statistical problems in a 
multiplier; later our attention was called to the 
fact that the theory of such iterations had already 
been given in 1889 2 • In view of the interest of a 
whole group of questions pertaining to multipliers, 
we repeat here the theory of such iterations; the 
present exposition is somewhat more detailed than 
h .. al 2 t e ongm one . 

In close analogy to Eq. (15), we define the fol
lowing function 

Ox,n (1- s) =On (1- zp'"). (19) 

We must perform a suitable passage to the limit 
n-+ oo, l -+ 0, and thereby hope to get a general-

2 M. Le rneray, Com pt. rend. 128, 278 (1889) 

~!Bil 

/flo 
0./ZU 
0,/0/1 
D./16/1 
/J.//G/1 

~lf!!o PtvJ 
~~~~~~~~~~~~~~~ 

v 

Fig. 4. The distributions Pi 0 ( v) and P ( v )(Poisson 

distribution), v' =59 v. 

ized iteration. Such a passage to the limit can be 
achieved by substituting in Eq. (19) 

s=1-0-n(u), n-?oo, 
where u is fixed 

In this way, we define (first for finite values of n) 

Ox,n (u) =On [1- p' (1- O_n (u))]. (20) 

The geometrical meaning of the functions 
G (u) defined in this way can be shown graphi-

x,n 
cally in Fig. l as follows. Beginning with the 
point [ u, U = G (u) J on the curve M, \I.e make a 
large number n of steps to the right, and finally 
approach the point with abscissa G_n (u)"' l in the 

neighborhood of A. The abscissa of the latter 
point differs from unity by the small quantity 

s = 1 - O_n (u). 

Multiplying this distance by p", we arrive approxi
mately at the point x steps back, provided that x 
is an integer; consequently, for integral x, 

r (1- a_n (u));:::::;; 1- 0-.~-n (n). 

Thus,for integral x we expect that 

O.~.n (u) ::::::o OnOx-n (u) = 0.~ (u). 

Inasmuch as the approximation should improve with 
increasing n, we can expect that the limit 

lim Ox,n (u) = o_;(u) (2la) 
n=co 

exists, and that 

a:cu) = O . ..(u), (2lb) 

if x is integral. Below we shall show that not 
only Eq. (2la) but also Eq. (2lb) actually are 
valid, and moreover, that for arbitrary real x we 
have 
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(22) 

10. For the proof, we first investigate 
e (u), defined by Eq. (20) for finite values of n. x,n 

Since p > 1, the argument of en for X ~ 0 in the 
right-hand side of Eq. (20) lies between zero and 
one, if e_n (u) is in the same interval. Thus 

ex,n (u) is completely defined for ul .:5 u ~ 1 and 
X< 0. For X > 0, the argument of en in the right
hand side of Eq. (20) can be negative, and there
fore we must restrict ourselves to a consideration 
of values of u that are not too small. 

Furthermore, from Eq. (20) we have 

(23) 

and also 

Oo,n (u) = U. 
(24) 

Setting x ==- y, we obtain 

Thus e . ts the inverse function of e . Dif-·x,n x,n 
ferentiating Eq. (20) with respect to x, we find 

iJG ( , 
~; u,~ =(In p) p~ (1 - O_n (u)) 

0~ [1-pt"(l-O_n(u))J>O. 

Consequently, e (u) is a monotone increasing x,n 
function of x, and therefore has a unique inverse 
functio.n. 

Equations (23) and (24) show that for fixed n 

and x= 0, 1, 2, ... , ex n (u) represents a 
sequence of iterations, whe're the iterated function 
is e 1 (u). It remains to show that the limits ,n 
exist as n .. oo. 

The passage to the limit. To prove the exist
ence of the limits e;(u)lit is necessary to assume 
tliat the first and second derivatives of e (u) ex
ist at u = l. As before, we write 

O'(l)=p, 0"(1)=Q+p2=q. 

From the fact that e 'lv.t) and e "' ( u) are .nonnega
tive in the interval 0 ~ u ~ 1, it is easily found that 

1--p(1-u)~O(u) (25) 

Analogously, for en (u) with 0 ~ u ~ 1, n = 1, 2, 
. .. , it can be shown that 

1--pn(l-n)~On(u) (26) 

where 

Thus [cf. Eq. (11)] 

a.= <Xo(l- p-n), <Xo = q / p(p- 1). 

We shall examine the behavior of 1 - e_n U- f) 

for small values of f, and large positive values of 
n. At the beginning of this paper, we arrived 
qualitatively at the conclusion that 1 - e_n U- d 
approaches its limiting value of zero alroost like 
a geometrical progression. In order to make the 
qualitative conclusions given above more rigorous, 
we shall show the existence of a finite limit 
A (u) such that, for n > 0 

For the proof, we shall write 

On(l -z) = U 

or z = 1 - O_n (u). 

Approximating en (1 - f) by polynomials in ac
cordance with Eq. (26), we get from Eq. (27) 

1 - pnz < U ~ 1 - pnz + 1/2 <Xop2nz2. 

(27) 

On the left-hand side of the inequality is a roono
tone decreasing function of E; thus, there exists an 
f ':Sf for which the first equality becomes an 

equality iff is replaced by f: Analogously, for 
not too large f, there exists an f "~ f for which 
the second inequality becomes an equality if f is 
repla,ced by f ": Thus we can write 

and 
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Solving these equations with respect to c 'and c "', 
we obtain 

8 , __ 1. _--_1_1 

p" 

Bearing in mind that 

for 

we can write the inequality for c in the form 

1-u<pns 

-<; 1 - u + 2 (1- u) 2 =A (u), 
a a 

provided that 

(28) 

and also 

(29) 

where we must use the stronger of the stipulated 
conditions. 

Expressing c in the terms of u, we get 

pn (I - O_n (u))-<; A (u), (30) 

where the boundary value A (u) certainly does not 
depend on n, if it is assumed that u lies within 
both intervals (28) and (29). However, it is possi
ble to free ourselves from condition (29). If 

and u lies in the interval 

i.e., if u lies outside the i~terval (29), then there 
must exist a finite k, dependent on u > u 1 , such 

that l ~ G_k (u) ~ l- oc 0 /2; then v = G_k (u) lies 

inside the interval (29), although u does not lie 
inside this interval. Substituting v = G_k (u) in the 
inequality (30) instead of u, and multiplying by pk, 

we find that 

then, setting 

ph A (0-h (u)) = B (u), 

we have 

(31) 

Thus we have an upper bound, even if u lies outside 
the interval (28), but inside the interval (29). For 
u = u 1 , the upper bound does not exist, inasmuch 
as 

as 

n-? oc. 

With the help of the result just obtained, we can 
show the existence of the limit of G* (u). To do 

" 
this, we evaluate the difference 

hn = Ox,n (u)- Ox,n+I (u) 

=On [1 -px(1- O_n (u))] 

~ On+I [1 - p-"(1- 0-n-I (u))]. 

Setting 

or 

we have 

where 

U=0n+I(1-s), 

hn =On (u')- On (u"), 

u' = 1-px(l-0(1-s)), 

u" = 0(1- pxs). 

From Eq. (32) we have 

1 hn j -<;I u' - u" J pn. 

(32) 

(33) 

(34) 

From Eq. (33) we find, with the help of Eq. (25), 
that 

1- p:r:+Is ~ u'-<; I- p->:+Is + 1j2qpr:8 2, 

1-pt:+Is-<; u"-<; I_ p:c+Is + Ij2qp2.t:s2. 

Thus (35) 
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It was shown above that f < B (u) / pn ; hence, 
from the inequalities (34) and (35) we ~ave 

I h, I< 1/:l (B (u))2 q (p + P2x) I P" = C (u)/p", 

so that the sequence G (u), n = l, 2, . . . , x,n 
converges for sufficiently large values of n, at 
least as fast as a geometrical series, and hence 
the limit c: (u) necessarily exists. 

For integral x, the value c: (u) can easily be 
calculated .. We shall consider only the case x = l. 
We introduce two quantities £'and £"'as follows 

1-s'=,a(1-s) H 1-·s"= 1-pz. (36) 

In analogy with the derivation of the inequality 
(35), we find that £'and f" satisfy the following 
relation 

I s' - s" I < qs2 • 

Thus 

Setting 

e = 1 - a-" ( u)' 

and taking account of Eq. (36), we can write 

I a (u)- Gl,ll (u) I< p"qs2 • 

Inasmuch as £2 is of order p- 2n, as shown above 

[ cf. Eq. (31) ], the expression on the right-hand 
side goes to zero, and we have 

lim al,ll (u) =a (u). 
n= 

11. We note that instead of using expression 
(20), we could have begun our investigation by 
introducing the expression 

(37) 

where 

Expressions (20) and (37) are analogous,but never-

theless 1. O ( ) _ (;* ( ) tm x,n U - x U 

and lim a,,x (u) =a; (u) 
n=oo 

are two completely different limiting processes. 
Therefore, it should by no means be considered 
trivial that these two processes lead to one and 
the same limiting function. However, more de
tailed examination shows that 

a:(u) = o.~:(u). 

Thus Eq. (37) can be used instead of Eq. {20) for 
obtaining iterations of fractional order. We note 
that in just the same way that we proved the 
relation G! (u) z: G ( u ), we can show that C1 (u) 
= G (u); furthermore 

whence it follows that 

eX (u) =a; (u) = ak (u) 

for an arbitrary integral value of k. The proof can 
also be extended to non-integral values of the 
index.. Indeed, we shall write 

Here g 1 (u), g 2 (u), • • . are also a sequence of 
iterations, which for x > l can be considered as a 
basis; we can define 

g:(u)= 1img,{1-p'Y(l-g_,(u))}, 
n-=co 

p' =px, 

g.; (u) =lim g_, {u1 - p( (u1 - g, (u))}, 
n=oo 

As before, we have 

g~ (u) = g~ (u) = gl (u). 

Hence 

We see that for x > l, Eqs. (20) and (37) lead to 
identical results. With the help of Eq. (22), the 
result obtained above can be extended to arbi
trarr •·eal values of x. 

12. The "inverse" problem of the multiplier, 
mentioned in Sec. l, can be formulated as follows. 
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Given P N ( v) = 7T ( v ), the distribution arising at 

the Nth stage of the multiplier; we want to find 
P ( v) = P 1 ( v ). With the help of the generating 

functions, we can write 

r(u) = 2}uv;;(v) = ON(u). 
v=O 

Using the generalized iterational process, we 
obtain 

O(u)= l\;N(u). 

Indeed 

ON(u) = 0 ... O(u) 

= f1/N ... ft/N (u) = f (u). ---.... ---_.. 
N 

Clearly we have 

0 (u) =lim fn {1- ;;1/N (I-f -n (u))}, 
ll=OO 

where 7T = r, (l) is the mean number of electrons 
ejected at the last stage. 

Numerical calculations are immediately ef
fective only when the distribution 7T ( v) is known 
sufficiently exactly. It goes without saying that 
we cannot require that 11 (v) be known for the 

separate integral values of v; the most that can .. 
be hoped for is tha~ rr ( v) be known over a range 
of values of v that 1s .not too broad. If the dis-

tribution is given in this way, then r ( u) can be 
calculated by numerical integration: 

+co 
r (u) = ~ uv7t c~) dv. 

-00 

Only those values which are near u = l are of 
interest. Indeed, if II - u I » 1/pN, then the 

value of the integral is practically equal to either 
zero or infinity, and the calculation loses its 
meaning. However, there is a small interval near 
u = l where the calculation can be made, which 
permits the determination of the main part of 
r ( u ), from which we can find the iteration 
r1/N(u). 

The procedure described above can always be 
carried out mathematically, and thus the dis
tribution p 1 ( v) can be calculated. · However, if 

we started from an arbitrary distribution 7T ( v ), the 
calculated result would in general lead to an un
acceptable distribution P 1 (v), containing nega
tive probabilities. Thus if we start with a dis
tribution rr ( v) and obtain an acceptable distri
bution P (v), this may be regarded as a check on 
the correctness of the method used. 

Translated by R. Silverman 
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