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The problem of the stability of a singing flame is considered, beginning with the con
siderations of Rayleigh, and taking into account the phenomenological delay in burning. 

T HE phenomenon of the singing flame was ob
served as early as the second half of the 

eighteenth century and since that time it has 
frequently served as the subject of an effective 
lecture demonstration. If a gas burner is placed 
inside a tube, as is shown in Fig. l, then, under 
a number of conditions, intense vibrations of the 
flame and of the surrounding air are set up, and 
the tube begins to resound, or, as is said, the 
flame begins to sing. 

---~--
FIG. l 

This phenomenon has been observed by a number 
of authors 1 . Different simple hypotheses as to 
the reasons for the onset of vibrations have been 
given. The first correct, qualitative explanation 
of the mechanism for maintaining the vibrations 
was given by Rayleigh 2 , who showed how the vi
brating flame could maintain sound vibrations in 
the tube. The flame maintains the vibrations of 
the air column if it is located near an anti-node of 
pressure and vibrates so that, at the moment of 
compression, a larger amount of heat is evolved 
than at the moment of rarefaction. In subsequent 
researches, this qualitative picture has not been 
changed in any essential way, in spite of the large 
amount of research on the problem*. 

* This work was complete in 1952 (see the report of 
GIFTI for 1952). In 1953 B. V. Raushenbakh3 
considered the problem of the excitation of vibrations in 
the case of slow propagation down the tube. 

1 A. T. Jones, J, Acoust. Soc. Am. 16, 254 (1945) 
2 Rayleigh, Theory of Sound, v. II, pp 222-228 
3 B. V. Raush€mbakh, Zh. Tekhn. Fiz. 23, 358 (1953) 
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In the present work, which is based on the con
siderations of Rayleigh 2 , and which takes into 
account the phenomenological delay in burning, a 
detailed study is carried out on the conditions for 
the self-excitation of the singing flame. The re
sults which are obtained are in excellent qualita
tive agreement with the known experimental facts, 
but they do not provide a quantitative check. 

l. DISCRETE MODEL OF A SINGING FLAME 
(MODEL No. I) 

A study of the conditions for self-excitation of a 
singing flame requifes the consideration of small 
vibrations which are superimposed on the estab
lished gas flow in the system. In the discrete 
model, if we idealize the sounding (air) and sup
plying (gas) tubes in the form of resonators, we 
obtain the arrangement shown in Fig. 2. .E:ach of 
these resonators, for vibration frequencies w < a/l, 
where l is a linear dimension of the resonator, a 

the sound velocity, is itself an oscillator, the 
mass in which is the mass of the air vibrating in 
the neck of the resonator, and the elasticity is that 
of the air trapped within the resonator and com
pressed by the air, vibrating like a piston in the 
neck. 

FIG. 2 

Let x be a small displacement of the air in the 
neck of the resonator A (for graphic purposes, this 
displacement can be represented as a change in 
position of a piston in the neck of the resonator), 
and let y be the displacement of the gas in the 
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neck of resonator B. Also,let m1 and m2 be the 
"masses" of vibrating gas in the necks of 
resonators A and B, and p, p 1 and p 2. be the 
e-l'ternal pressure, and the pressures m resonators 
A and B, respective! y. Then the equation of motion 
of the masses of air in the necks can be written, 
for small vibrations (for those characteristic 
frequencies which satisfy the boundary conditions 
given above), as 

burning, due to conduction and convection to the 
outside, remains constant. Then, in the presence 
of the flame, just as earlier, a change in y pro
duces a large change in the pressure p , since the 
gas emerging from the tube, in burning,1produces 
a positive pressure amplification. 

In accordance with our assumptions, :we now have 

m~x· + o1x = S1i1P1; (l.l) (ex is a constant of proportionality, y r is the value 
of y at the time t - r ), which, after substitution in 

where S 1 and S 2 are the cross sectional areas of 
the resonator necks. In the absence of flame, a 
mutual elastic coupling takes place between the 
two oscillators x andy. Actually, a change in x 
produces a change in P;t proportional to S 1x, .and a 
change in y produces changes in p and p propor-
. l s . 1 2 twna to y, I.e., 

2 

0.pl = ·- k1S1x + k1S2y, 11p2 = -- k2SzY, 

which, upon substitution into Eq. (l.l}, yields 

m1-~ + o1x =- k1Six + k1S1S2y; {1.2) 

m 2§ + o2y = - (k1 + k2) S~y + kS1S2x. 

The second terms in the right hand sides of Eqs. 
(1.2) indicate the el~stic coupling between the 
oscillato:rs x and y. It is easy to prove that small 
vibrations, described by the differential equations 
of Eq. (1.2), die out with the passage of time, i.e., 
the initial system is stable. 

With the appearance of the flame, the character 
of the coupling between the oscillators is 
considerably changed, and in this change lies the 
reason for the possible self-excitation of vibra
tions. Jumping ahead somewhat, we can say that 
the system under study consists of two dissipative 
parts- the sounding tube and the tube supplying 
the gas -- between which there exists nonconser
vative coupling which transfers its energy into the 
singing flame. The problem of the investigation 
of the excitation condition of the singing flame 
is primarily the problem of the investigation of this 
coupling. 

We assume that the rate of heat production of the 
flame (i.e., the rate of the chemical reaction of 
combustion) is proportional to the rate of flow of 
the gas, and takes place with a certain phenome
nological delay of burning, r ( if a liquid fuel had 
been used, then r would have been a quantity of 
the order of the time during which burning of the 
droplet takes place after its emission from the jet). 
We shall also assume that the heat loss in the 

Eq. (l.l), yields (1.3) 

m1x· + o1x = - k1Six + k1S1S2y + a.k1S1S2y ... ; 

lnzY + o2y = -- (kl + k2) S~y + klSlS2x. 

If we denote the characteristic frequencies of the 
resonators A and B by w1 and w2, and neglect the 

term k S S yin comparison with cxk 1S1S2y 7 , then 
we get\~e lollowing linearized equations for small 
vibrations: 

Here 

•• • r 2 
X+ h1X + 6l1X = p.y ... ; 
•• • 2 

y + h2y + 6l2Y = vx. 

k1S1S2 
'1=--. 

m2 

(1.4) 

The characteristic equation of this system, obtained 
by the usual methods, is 

(z2 + hlz + (Un (Z2 + h2z + (U~)- vp.e-"'z = 0. (1.5) 

Solution for the para~eter f-LV is easily accom
plished. Setting z = iw in Eq. (1.5), we get 

vp. = (6li- 6l2 + ih16l) (6l~- 6l2 + ih26l) ei-rw (1.6) 

For 't = 0 

(vf1)o = (6li- 6l2 + ih16l) (6l~- 6l2 + ih26l). 

The curve (vf-1.) 0 is plotted in Fig. 3a. The ab
scissa of point b, the intersection of the curve 
with the real axis, is given by 

hlh2 [( 2 2) h 2 2] 
- hi+ h2 (Ul- <U:i + l(U2 + h2(Ul ) 

and decreases in value as w approaches w . 
1 2 

With a delay r, the curve of Fig. 3a becomes 
"twisted" and takes on the form shown in Fig. 3b. 
The region of stability is denoted by the thick line. 
The system will be stable for an arbitrary delay if 
I v"\ < r . , where r . is the minimum distance r m1n m1n 
from the points of the curve of Fig. 3a to the 
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a 

FIG. 3. a - (vp.) 0, b - (vp.) 

FIG. 4 

origin. The plot in the plane of the parameters vp. 
and r is represented in Fig. 4, where the region of 
stability is indicated by shading4 • 

It follows from Figs. 3a, 3b and 4 that (a) there 
is no instability for small values of vp. without 
delay r; (b) excitation of the vibrations is due to 
increase in vp., to the closeness of the frequencies 
cu 1 and cu 2 , and also to a decrease in the 
damping coefficients h and h . 

1 2 

2. SEMIDISTRIBUTED MODEL OF THE 
PHENOMENON (MODEL No. 2) 

Gas is fed into the resonator A by a long narrow 
tube B (with cross sectional area a) from the 
resonator C (Fig. 5). It is required to find the 
conditions for self-excitation of vibrations of the 
flame, assuming that, just as be£ore, the resonator 
A is a discrete section, but account is now taken 
of wave phenomena in the delivery tube B. 

The equations for small vibrations of the gas in 
the neck of the resonator have the form 

(2.1) 

4 Iu. I. Neimark, Stability of Linear Systems, Moscow, 
(1949) 

p= const 

FIG. 5 

and the equations for small vibrations of the gas 
which are superimposed on the flow existing in the 
supply tube are now described by equations with 
partial derivatives: 

(2.2) 

where v is the change in the velocity of the gas in 
the tube, p is the change in pressure, p is the gas 
density, and a is the velocity of sound in the gas. 

To Eq. (2.2) we add the following boundary con
ditions at y = L and y = 0: we assume the pressure 
to be constant in the reservoir C, or 

PY=L = 0; £2.2') 

Fol' y = 0, an efflux condition exists which, after 
linearization, can be put in the form 

v = 'I (p- D.p), (2.2") 

where v = oc 21 v0 / p ( "' 1 = coefficient of delivery, 
v = velocity of steady gas flow). . 

0 As in the previous model, 

6.p = oc ~ v-:dt + p ~ vdt - rx, (2.3) 

where v is the change in the discharge velocity of 
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the gas in the supply tube from its stationary 
value at the time t, and v r is the corresponding 

value at the time t - r; oc,. (3 and y are constants, 

equal,respectivel y, to 

oc = _pcsnRq 
cz,M1V' 

Q = cspo 
I"' V' 

Here M is the mass of the mixture of gaseous 
combui"tion products and air in the resonator, q the 
heat capacity of the gas, n the number of gram 
molecules, R the gas constant, p the density of the 
gas, Po the stationary pressure in the resonator, 
and V the volume of the resonator. Actually, by 
virtue of the linearization, the overall change in 
pressure l~p in the resonator is composed of 
changes produced by 

a) the influx of gas through the tube B, equal to 

: 0 ~ vdt:: 

b) the discharge through the neck of the resona
tor A, equal to 

Sp\·· Sp V Jxdt =-v x; 

c) the generation of excess heat from the burning 
gas, equal to** 

d) a ch;mge Ap as a result of the chemical 
. W cheljl l reactiOn. e can neglect this atter term since, for 

hydrogen, 

I ~Pcheml ~~ ~Pt ~ 80. 

Therefore the complete system of linearized 
equations for the semidistributed model will be 

= S [ oc ~ v-:dt + ~ ~ vdt -- "fX L=O; 
(2.4) 

** In burning for a time t, the mass M = opfv rft of 

combustible gas which reacts with the mass EM of air 
( E is a coefficient defined by the chemical equation of 
the combustion process). As a result of the burning, we 
obtain (l + E) M products of combustion plus the heat 
qM. Because of the rise in temperature, the pressure in 
the resonator will be increased by an amount given by: 

Py=L = 0, Vy=O ='I (p-Ap). 

In order to find the characteristic equation of the 
system of equations (2.4), we follow reference 5 and 
write 

p (y, t) = (Ae-zy{a + Bezyfa) ezt, 
1 v (y, t) = ap [- Ae-zy{a + BeZYi"] ezt, 

X= Cezt, 

which, after substitution into the first, third and 
fourth members of Eq. (2.4) reduces to the system 
of equations 

C(mz2 + oz) = s{roc(- A+ B) e-z-. 

+ ~ (-A +B)] ap1Z - ,c} ' 
Ae-zL!a + BezL{a = 0 

' 
.!_ (- A + B) = v {A + B .ap 

-r~~ e-z-r (-A+B) + _fj (-A ·t B)- Tel} 
apz apz J · 

We eliminate the constants A, B and C from this 
system, and obtain the characteristic equation 

(z11 + hz + k2)(1 + D th z,1 ) (2.5) 
2 ) 

Here 

+ (z + h)£(1 + f.te-'"'z) = 0. 

3 h=-· m' k2 = yS · D = vap,· 
m' 

E=v~; 
2L 

'tl =a. 
The system under consideration will be stable if 

all the roots of the characteristic equation (2.5) lie 
to the left of the imaginary axis. On the plane of 
the parameters D and T , we find regions where this 
condition is satisfied, knd regions where it is not. 
From Eq. (2.5) it folloves that 

D =- [;: (1 + p.e--=z)+ 1] cth z;1 , (2.6) 

P1 ::=E(z +h), P 2 -=::.z2 + hz + k2 • 

In Eq. (2.6) we set z = i w. Then (2. 7) 

D = i r=: ~~:~ (1 + p.e-i-r"') + 1] ctg W2Tl ::= Q ctg W2Tl. 

The boundary of the region of instability consists 
of points which satisfy Eq. (2. 7), at least for one 

5 lu. I. Neimark, Uch. Zap. Gorki State Univ. 14, 191 
(1950) 
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real cu. Such cu must either be a root of the equa
tion 

or a value which converts the expression 

into a purely real number (because D is real). For 
each of the roots of the equation, cotan (cur1 / 2) 
= 0, i.e., 

(2.9)' 

so that D = 0. 
We construct the curve Q (i cu) to find the value 

of cu for which Q is a real number. For T= 0, the 
shape of this curve is shown in Fig. 6 a (only the 
part of this curve corresponding to cu > 0 is shown; 
the second half of the curve, for cu < 0, is located 
symmetrically with respect to the imaginary axis). 
Its projection, which increases with increase in the 
damping h, corresponds approximately to the 
characteristic frequency of the resonator for small 
h. The projection also increases for an increase in 
p., since p. » l, with the center of symmetry at the 
point (0, i ). The presence of T produces a rota
tion of the points of this curve through an angle 
- cu Tabout the point (0, i ). As a result, the points 
on it can intersect with the real axis (Fig. 6 b). 

lr<k 

a b 

FIG. 6. a- (Q}0 , b- (Q) 

The equation for the determination of the corre
sponding points of intersection cu = cu. is 

obtained by setting the imaginary part ~f Q(icu) 
equal to zero. The condition lmQ(icu) = 0 gives 

(k2 - (1)2) 2 + h2 (1)2 + E [( 1 + fL cos (I) 't) hk2 

+ fL (I) sin (l)'t (k2 - (1)2 - h2)] = 0. (2.10) 

After the cu. are e'stablished, the equation of the 
boundary o/ the stable region in the plane of D, -r; 
is written in the form 

D = Q ((l)j) ctg ((I)J'tl/2). 

After drawing in the shaded lines, in accordance 
with the rules set forth in reference 4, we obtain 
the plot shown in Fig. 7. The region of stability 
is shaded on them. The form of the auxiliary curve 
is obtained from these drawings: 

7:1 

3Tt 
UJ1 

a 0 

b 

FIG. 7. 

0 

c 0 

a) self-excitation is not possible without delay 
in burning; 

b) an alternation of stability and instability takes 
place initially upon an increase in the length of 
the supply tube, but for a sufficiently long tube, 
instability is approached (we note that instability 
is possible even in the absence of the supply tube, 
j.e., for T1 = 0); 
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c) for small damping and not very large fl• the 
frequency of the vibration that is excited is close 
to the resonant frequency of vibration of the 
resonator; 

d) a decrease in h and an increase in E or fl 
favor the establishment of instability. 

3. DISTRIBUTED MODEL OF THE SINGING FLAME 
WITHOUT CONSIDERATION OF CONVECTION 

(MODEL No. 3)* 

We shall now consider the ~upply tube and the 
sounding tube as one-dimensional distributed links, 
and the flame as a distributed, linear heat source. 
We break up the system under consideration into 
four parts: the burning zone 2, the zones 1 and 3, in 
which we neglect the changes in temperature 
brought about by the vibrations of the flame, .and 
the supply tube 4 (Fig. 8). 

I 

l 

'I 

-

=-l, ll 

,,.., -l 

!/"' D 

J 

!/"' 

D !I l, 
FIG. 8 

The changes in velocity and pressure in regions 
1,3 and 4 (if terms of the order of the ratio of the 
velocity of convective flow to the velocity of sound 
are neglected) are described by the linearized 
equa6ons 

(3.1) 
av,. ap,. op " i 2 vVi 
a~= Pi~dy • (Jt=Pioa;o 0Y (i=l,3,4). 

In the burning zone, we have the linearized Euler 
equation 

(3.2) 

* The singing flame has also been observed experi
mentally in a horizontal pipe without a convective air· 
flow6 

6 Z. Carriere, Revue d' Acoustique 4, 149 (1953) 

and the equation of continuity in the form 

(3.3) 

to which we must also add a relation between the 
changes in pressure and density, taken from the 
equation of state of the medium and the first law 
of thermodynamics: 

dp = P2o dQ+ a2 dp 
2 20 2 (3.4) 

lcvT 0 

where c is the heat capacity at constant volume. 
v 

Neglecting terms in dQ which are connected with 
the heat exchange between different layers of the 
gas, we assume that 

dQ = bv ( t- "' dt 
4 '1y = 0 (3.5) 

(Tis the phenomenological delay in burning). 
Replacing the material derivatives in Eq. (3.4) by 

('iJp2 iJp2) dt (iJp2' dp2) Tt- Vzo iJy and 7ft- V2o iJy dt, 

respectively, and neglecting the convection terms, 
we obtain 

Eliminating the density p2 from Eqs. (3.3) and 
(3.6), we finally obtain 

iJp2 2 iJv2 N ( ) dt- azoPzo iJy = V4. t- -r y=o, 

N=- (Pzo/lcvT0) b. 

(3.6) 

(3.7) 

We now write the boundary conditions for .1!1Js. 
(3.1), (3.2) and (3. 7), and the conditions for con
necting the solutions in regions 1,2 and 3: 

for y = - L1 : V 1 = v1p1; (3.8) 
for y = 0 : V 4 = v, (p,- p2); 

for y =-L 2 : V 1 = V 2 ; 

for y = 0 : Vz = V 3 ; 

for y = L 3 : V 3 =- v3p3 ; 

for y = L 4 : p, = 0; 
for Y=-L2: Pt=Pz; 
for Y = 0 : Pz = Pa; 

We can now go on to the basic problem of the investiga
tion of the conditions for self-excitation of the 
vibration. Following reference 5, we must first of 
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all establish the characteristic quasi-polynomial of 
of the system of equations (3.1), (3.2), (3.7) with 
the boundary conditions (3.8). That is, we seek 
solutions ofEqs. (3.1), (3.2), and (3.7) in the 
form 

Pi(y,t)=Pi(y)ezt, (3.9) 

Vi (y, t) = vi (y) ezt (i = I, 2, 3, 4). 

After substitution in the corresponding equation 
for i = l, 3 and 4, we find that 

(3.10) 

where A . and B. are arbitrary constants. 

From kqs. (3~2) and (3.7), we get, after similar 
substitutions (employing the expression just now 
obtained for v 4 ), 

zV2=_!_P;, (3.11) 
P2o 

zP2- a~oP2o V~ =_!!_[-A,+ B,] e-"z, a,p, 

whose general solution is 

We introduce the notation 

L 1 - L 2 2 L 2 La 2 L, 2 = "1• - = 't2, 2- = 'ta, - = 't,, a a a a 

N v4 = 2p., v1a p = p.1 , v3 a p = p.2 , v, a, p, = P.a· 

Then the characteristic equation of the problem, 
obtained from Eq. (3.13) by elimination of the 
constants A. , 8 . , can be expressed in the 

l l 
following form: 

(3.14) 

- ..!:.. e -Tz(1 + D2ez"•) (1 + D!ez(-r,+'l•"•>) (eZ'<a/2 - 1) 
z 1 - DID2eZ(-r,+-r.+-r,) • 

Here 

We consider aD-partition in the parameters flg 

and 74. The boundary of the octant 113 > 0, 
74 > 0 for these parameters consists of the series 
of curves 

where w. are the roots of the equation 
], 

p2 (y) = A:2e-zyfa. + B2ezyJa. 
ReF (iwj) = 0 and F (z) denotes the right hand side 

(3.12) of Eq. ~3.14). To find the roots of this equation, 

N + ~(B, -A,) e--rz, 

V2 (y) = - 1- {- A 2e-zy;a, + B ezyfa.} 
a2 P2 2 • 

Now, substituting these solutions in the boundary 
conditions (3.8), we get a system of eight equations 
in the arbitrary constants A . , B. , and the fre
quency z. For the sake of ~implicity, we shall 
consider a io and p io to be single-valued in zones 

1, 2 and 3, equal, respectively, to a and p: 

(3.13) 

= vlap (AlezL,fa + Ble-zLda), 
_ A 3e-zL,fa + B 3ezL,fa 

= - v3ap (A:3e-zL,fa + B 3ezL,fa), 

-A,+ B, = a,p, v, (A,+ B, -A3 -B3), 

A,e-zL,fa, + B,ezL,fa, = 0, 
_ A 1ezL.;a + B 1e-zL.fa = .- A 2ezL.fa + B 2e-zL.fa, 

+ B 2e-zL.fa + 
- A2 + B2 = - Aa + B3 , 

A2 +Be+ N(B,- A,) e--rz = A 3 + 8 3 • 
a4p4z 

w, 
II, 

FIG. 9. (F) 

we construct the auxiliary curve F (i w ). Its ap
proximate form is shown in Fig. 9. The projec
tions A l' A 2 , ••• correspond to values of w for 
which tne value 

1 - D1D2 exp {i(l) ('t1 + 't2 + 'ta)} 

i's close to zero, which takes place (approximately) 
for frequencies close to the eigenfrequencies of 
the resonator. The magnitudes of these projections 
decreases in general, because of the presence of 
z in the denominator of F(z). Furthermore, some 
of these can decrease or even disappear: 

a) if 1 +D2eZTa:::::;O, i.e., if the top of the 

tube which supplies the gas lies at a pressure 

node; 
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b)if 1+D 1exp {z [7]. +('S/2)] },o, i.e., if 
the center of the burning zone is at a pressure node; 

c) if at these frequencies exp [iw ( 72/2)] "' 1, 

i.e., if an integral number of waves is contained 

in the burning zone. 
A diagram of the regions of stability and instabil

ity in terms of the parameters p. and 74 is shown 
in Fig. 10*. To each projectio; of the auxiliary 
curve which interse,::ts with the imaginary axis, 
there corresponds a series of regions of instability. 
The parameters p.3 and 74 correspond to the 
parameters D and T1 of the previous model, and the 
difference between the plots of Fig. 7 and Fig. 10 
lies only in the values and number of roots w. and 
the values of the quantities - iF (iwj) and (' dwj) 
corresponding. 

FIG. 10 

The new result, on the basis of which we have 
developed this model, consists of the possibility 
of exciting not only the base frequency of the 
resonant tube,but also its higher harmonics, and 
of the discovery of the dependence of such excita
tion on the position of the flame, its dimensions 
and intensity, and the delay in burning. ·,; e note 
that the role of the parameters p. and Tfor the 
auxiliary equation in this model and in the preced
ing one are exactly the same. 

The product D 1D 2 plays a role here analogous to 
the damping h in the preceding model; the projec
tions will be increased as D 1D 2 approaches unity. 

4. DISCUSSION OF THE llESUL TS 

Let us compare the facts observed experimen
tally by the different authors with the conclusions 
which follow from the theory presented above. It 
is natural that the discrete model explains the 
smallest number of facts, and, conversely, that 
the distributed model describes the phenomenon 
most completely. 

l. ~xperiment shows that the vibrations of the 
singing flame are excited periodically, independent 

* The drawings for cases b and c of Fig. 10 are the 
same as for Figs. 7 b and 7 c. 

of the length of the supply tube. Model No. 1 does 
not explain this fact. For models ~o. 2 and No. 3, 
this consclusion follows directly from Fig. 7 and 
Fig. 10. If, for fixed D (p.;), T1 ( 74) increases, then 
the region of stability will be changed to a region 
of instability, and vice versa. In this case, the 
excitation conditions can be shown to be quantita
tively different from the conditions pointed out by 
Rayleigh (the flame sounds when the length of the 
gas tube is somewhat less than)~A, ~4 A, ... , and is 
silent when its length is approximate! y ~A, A, 3/2 A, .. , 
where A is the wavelength in the gas). This devia
tion of the excitation conditions from the condi
tions of aayleigh has been observed by several 
experimenters. The action of progressive waves 
was made clear in reference l. These waves 
apparently arise in a gas tube along with standing 
waves. As can be seen from tile behavior of the 
curves in Figs. 7 and 10, at sufficiently large 
T ( T ), the system will always be unstable. 
1 4 

2. Experiment shows that the frequency of the 
singing flame is close to the fundamental eigen
frequency of the sounding tube. However, higher 
harmonics are sometimes excited. In the latter 
case, the frequency that is excited depends on the 
position of the flame in the sounding tube: a short 
flame is better for the excitation of the higher 
harmonics. Models No. 1 and No. 2 cannot explain 
these factors. Model No. 3 does explain them (in 
model No. 3, the dimensions of the flame are taken 
into consideration, directly, through the parameter 
T , and indirect! y, by the parameter p., in which 

2 

the density of the burning source appears. 
3. The system is stable in the absence of flame, 

when the gas simply blows through the resonator. 
In this case, the parameter p. = 0. The stability of 
the system for Model No. 1 can be seen directly 
from Fig. 4. For models No. 2 and No. 3, the 
stability results from the fact that the curve 
Q(i(J.)) in Fig. 6 [ (-iF (iw) in Fig. 9) ] does not 
intersect the real axis. The region of stability 
here occupies the first quadrant (D > 0, T 1 > 0 ) of 
Fig. 7 (or, correspondingly, p. > 0, T > 0, Fig. 10). 

:l 4 
Experiment indicates that non-hydrogen flames can 
also sing, for example, the flame of illuminating 
gas1 •2 , but they sing less satisfactorily than the 
hydrogen flame. This is accounted for by the fact 
that the parameter p. is less for the non-hydrogen 
flame. 

4. Experiment shows that if the supply tube is 
plugged with cotton, so that the gas can still leak 
through the plug, then the flame will not sing. The 
effect of the cotton is to increase the damping of 
the system. For model No. 1, this means an 
increase in the coefficient h 2 • The stability of the 

system increases with rise in h , as follows from 
2 
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Figs. 3 and 4. For model No. 2, the presence of 
the cotton means a decrease in the coefficient of 
consumption oc 1, i.e., a decrease in the parameters 

D and E. For small E the curve Q( i w) does not 
intersect the real axis, and consequently the sys
tem is stable. Similarly for model No. 2, the equa
tion lm [ - iF(iw) ] = 0 does not have real roots 
for small oc 4 . 

5. Experiment shows that the flame does not 
sing if the opening of the supply tube is very small. 
For model No. 1, small S corresponds to small 

2 
p.v. For small p.v, as follows from Fig. 4, the sys
tem is stable. For model No. 2, a small area of 
the aperture a is equivalent to small E, and, for 
model No. 3, to small p. [the area of the cross 
section of the gas tube is included in the coeffi
cient b of Eq. (3.5)]. As has already been shown 
above, the system is stable for small E (jl). 

6. Experiment shows that the frequency of the 
singing flame is close to the eigenfrequency of the 
resonator, but it can be somewhat different from it 
(in the case of a large aperture of the supply tube). 
The proposed theory explains this circumstance by 
the fact that the frequency w from Eq. (1.6), and 
the values w = w ., for which Q (iw) and -iF(iw) 
intersect the reaf axis, depend on the parameters 
of the gas tube and the parameters of burning, as 
well as on the parameters of the resonator. 

7. Since the effect of convection was not con
sidered in the proposed theory, none of the models 
explain the experimental fact that the flame, when 
placed in the upper part of the tube, excites 
vibrations more strongly than when it lies in the 
lower part of the tube. 

Translated by R. T. Beyer 
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