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The characteristics of matrix-tensors are described. The equations of the electromagnetic 
field are given in matrix form. 

JN three-dimensional space it is convenient to 
-denote vectors by a single letter, e.g., c, d, 

etc. On the other hand, in the four-dimensional 
space of special relativity, tensors usually are 
given by their components, which depend on the 
particular coordinate system used. But it is clear 
that the physical system described by a tensor 
does not depend on the particular coordinate 
system used to label the components of the tensor. 
One should therefore work directly with the tensor 
as such which then would describe the system in a 
way valid in any coordinate system. 

The tensors of four-dimensional space can he 
represented by matrices 1; these are independent of 
the coordinate system used and therefore are well 
suited for this purpose. These matrix-tensors are 
very useful in connection with problems of 
relativistic invariance. Utilizing them, it is very 
easy, e.g., to express relations between them, to 
find their invariants, to determine their character 
with respect to the transformations of the Lorentz
group, etc. 

We shall first investigate the application of 
matrix-tensors to the description of the classical 
electromagnetic field. The results thus obtained 

will be used in following papers 2• 

1. For the investigation of four-dimensional 
matrix-tensors it is useful to start with the proper
ties of matrix-tensors corresponding to vectors in 
three-dimensional space. 

We shall use the following notation: let d 
= fdk ek; then the three-dimensional matrix-

vector will he denoted by underlining: .d. =dkRk 
= dk Rk. Furthermore, an underlined letter will 

1 see, e.g., G. A. Zaitsev, ]. Exper. Theoret. Phys. 
USSR 25, 667 (1953). In the following we shall use 
the notation and the results of the first part of that 
paper. 

2 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 28, 
530 (1955); Soviet Phys 1, 491 (1955) 
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denote a matrix ( not necessarily a vector) which 
is a linear combination of R 1, R 2 , R 3 . So,if E and 
H are the electric and magnetic fields, respectively, 
then 

3 

E= ~ EhRh=EhRh, H=HnRh=H (l) 
h=l 

( H k is a component of a pseudovector ), etc. 

The following relations hold for three-dimensional 
matrix-vectors: 

In narticular, taking for C the matrix-operator 'V 
1. k - -=R a; ax which corresponds to the operator 

'll, we obtain 

y~ = div d + R curl d 

Utilizing Eq. (2). it is easy to show that 

~~~ = (cb) ~ + R ([cb] d)+[~ [cb]l = 

= (cb) d + (bd) c- (cd) b + R (b [de]) 
etc. - -~ · -

The components of the electromagnetic field 
t~nsor are 

(3) 

(4) 

(5) 
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Here fr ocf3 are the components of the dual tensor·to al).d,because of 

Focf3 which is defined by F ocf3 =% ("'f3yo F yo. (~- a,J?i) ~ (~ + a4R4) 
The matrix F, representingthe field tensor, is 

given by 1: = ~~~ + a4R4 (~~-~!)-a!~· 
(6) 

or, using Eqs. (1) and (5), 

{7) 

Simjlarl y, 

(8) 

As an example of the application of Eq. (7), we 
shall obtain from it the la'V of transformation of 
£and H under a change of the coordinate system. 

If the basis matrix-vectors R"' of the old system 
of coordinates are connected with the ft"' of the 
new system by 

(9) 

then the new components frk and JJ:k are obtained 
from 

F = RRkHk + R,RkEk 

= R. Rh Hk +RJt£k <k = R.tR.2J':<.s) 
or* 

In particular, for the case of a single symmetry, 
that is, if 

(10) 

( 12) 

we have 

A1F Ai"1 = ± R Q! - a4R4) H (~ + a,R4 ) 

+ R, (~-a, R4) ~- (Ci_ + a, R4), 

""' ""' * One can look at the components H and E either as 
k k 

being the components of the new tensor Jr =AFA- 1 ob-
tained from F by rotation or reflection, or as the com
ponents of the same tensor F in the new coordinate sys
tem. In the latter point of view the basis matrix
vectors of the new system of coordinates are obtained 
by a four-dimensiona}{otation or reflection character
ized by the matrix A . 

there holds 

+ H+ =aHa- a2 H- 2a4 [aE], 
-- --- 4_ --

(13) 

+E+ = -aEa + a;E -- 2a, [aH]. 
- --- - --

By performing two symmetry operations consecutively, 
namely 

(14) 

A1 = Rt, A 2 = I. [R1 cos (1XI2) + R4 sin (1XI2)], 

cos a= ll/.2 = + Vl - (vlc) 2 , 

which corresponds to a Lorentz transformation 1 one 
obtains 

H++ = [(1 +cos IX) I 2 cos IX] H (15). 

- [(1- cos IX) 12 cos IX] R1 H R1 - tg IX [eh EJ, 
- --

~++ = [(1 + cos IX) I 2 cos IX]~ 

- [\ l - cos IX) I 2 cos IX] R1 E R1 + tg IX r eh HJ 
(7 ------

Therefore the new components are given by the old 
components in the following way 

Ht"=Htt 

Ht+ = [H2+(vfc)Ea]/V1-(vjc)2, 

f!~+ = [Ha-- (vI c) £2] I V1- (-vI c)2, 

£i~' = Et, 

Et+ = [ E 2 - ( V I c) H s] I V 1 - ( 'V / c )2, 

E ;+ = [ E 3 + ( v I c ) H 2 ] I .j 1 - ( v I c )2 • 

(16) 

which are the well known expressions for the com
ponents of E and H in a moving frame of,reference 
(see for example p. 72 of reference 3 or references 
4, 5, etc). 

2 We shall now find some relations pertaining 
to four-dimensional matrix-tensors. 

The ,product of the two matrix-fourvectors C 
= cf3RP and D = af3 Rf3 is given by 

3 
L. D. Landau, E. M. Lifshi·tz, Theory of Fields, 1948 

4 Ia. I. Frenkel, Electrodynamics, 1934, part l 

5 I. E. Tamm, Principles of Electricity, 1949 



DESCRIPTION OF ELECTROMAGNETIC FIELD 413 

or 
1 CD= ca.d"" + 2 R""Rr- (cr~.d~ - c~da.) (18) 

1 
= ca.d"" -- -zlRY Ra eYaa.r;, Ca. dr;,. 

Equations (17) and (18) hold also for the case that 
the components of the fourvectors are operators. 

A particularly important matrix-operator is 

( 19) 

Application of Eq. (18) yields 

1 iJ2 
\7 2 = 0 = !!.. - c2 iJt2 (20) 

Using Eq. (2) we further obtain 

or 

Similarly, 

FD = -LHdJ + Ed•- J?I(Ed) 

or 

Finally, the product of two second rank matrix 
tensors is given by 

F(n F<2l = (R H<tJ + R4 ~<tJ) (R !f<2J 

+ R•E<zJ) = (E<tJ E<z>)- (H(I> H12>) 

+ 1 ((H(I> E<2>) + (E<t> H<2>)) 

+ R (fE<t> E<2Jl - lH(I> H<2>D 

(21) 

{22) 

(23) 

(25) 

+ R4 ([H(t) E<z>l + [E(I> H<z>l) 

or 

(26) 

In particular. 

(27) 

where C 1 = _:: ~· F «{3 Focf3 is an invariant, and 

C 2 = ~ F"'f3 Foc(3 is a pseudoinvariant which changes 

sign by reflection (i.e., after an odd number of in
versions); they are invariant under four-dimensional 
rotations. F 2 = 0 means C 1 = C 2 == 0. 

3. We shall now write down the equations of 
electrodynamics using the above formulas. 

Let I el = j el + cp elR 4 be the current matrix
fourvector. The equations 

divE= 47tPel• div H = 0, 

1 dE 41t' 1 cJH 
curlH- c (}[ = c jel' curiE+ c Jt = 0, 

can be written, putting in Eq. (22) D == '\;/, 

41t' ( iJ 41t' ) 9 F = - - J el or ' - FRa. = - J el . c a.xa. f . 

(28) 

(29) 

Maxwell's equations, Eqs. (28), when written in the 
matrix notation, appear as the single equation (29), 
where the relativistic invariance is already ob
vious from the form of the equations. 

Maxwell's equations for free space, i.e., if I 
el 

= 0, are given by 'V F = 0 · This is very similar 

in form to the special case of Maxwell's equa
tions for the. electromagnetic field given in refer
ence 6 *: 9 t/J = 0. However, this similarity is 
superficial because here F denotes a matrix
tensor, while t/J is a column composed of the com
ponents of spinor . 

Let the matri,.-fourvector of the potentials .be 
denoted by 

6 G. A. Zaitsev, J. Exper. Theoret. Phys. USSR 25, 
675 (1953) 

* We shall use this occasion to remark that in the 
references given in reference 6, the quoted page 
numbers should be exchanged: in reference 1, the page 
number should be 667, in reference 2 it should be 653. 
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From Eq. (18) we obtain 

"'flAX= (oA" I ox")x (31) 

+ Fx + R"A(o fox")x, 

where X is an arbitrary matrix or column vector. As
suming in the usual way a A cr.; a xcr. = 0, we obtain 

F='\lA. (32) 

It is easy to obtain in matrix form the forces ex
erted by the fields on the charges. From Eqs. (21) 
and (23) we have 

(33) 

= C(PeiE + (Ijc) [iel H])-+ R4 (JeiE) =C fel' 

where fel is the matrix-fourvector of the force. The 

components of the energy-momentum tensor rcr.f3 

must yield - arf3 I a X f3 = r:l. From Eqs. (29) and 
(33) we obtain 

a 
- axr' (RrxT"r>) = f el (34) 

and we therefore can put 

(35) 

It is immediately possible to show that rcr.f3 really 
are the components of the energy-momentum tensor. 
Indeed, putting h = Rk in Eq. (4), and with Eq. (7), 
we obtain for Eq. (35) the expressions 

(36) 

as it should be. 
Up to now; we limited ourselves to the case of 

electromagnetic fields in vacuo. However, the 
notation of matrix-fourtensors can be used also in 
the case of the presence of a medium, especially if 
questions of relativistic invariance are involved. 
Here one has to introduce to antisymmetric matrix
fourtensors of second rank 

(37) 

Here B is the magnetic induction, etc. Instead of 
Eq. (35) we now have 

;rtFR"w = T(A Rr> + J(P"r> Rr>), 

where 

- DiEn + oin ((BH) +(ED)), 

81tT~> =(ED)+ (BH), 

8'ltT4<h> = 81tTM = skjs(£H +DB) c (c) J s 1 s • 

The r(f; are the components of Minkowski's sym

metrized energy-momentum tensor in an arbitrary 
medium. In order to obtain the components of the 
general energy-momentum tensor 5 Tcr.f3 · "f 

P. P. , I.e., I 
Tcr.t-J =f. Tt-Jcr. one has to use the antisymmetric 
tensor of second rank ~(F (j) - <ll F). 

Finally, we shall give the tensor of the moment 
of momentum of the field. Putting X = xcr. R we 

obtain, according to Eq. (18), cr. 
1 
2 (XRa.Ta.Y- Rex Ta.Y X)= ~ Ra.Rr.Ma.rw, (38) 

where 
1 M«f>Y = c (xrxTr>Y- xr> Ta.Y) 

are the components of the angular momentum 
density of the field. 

Translated by M.Danos 
n 

(39) 


