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potential energy by a potential function and the 
determination becomes incorrect. The limits of 
the s, p, d, . . . , states can then be determined 
from Eq. (7) or Eq. (9), which reduce to the con­
dition 

[r3p (r)J MOKC = (1/247t2 ) [4/ (/ + 1)]'/z, 

Substituting p{r) from the Thomas-Fermi-Dirac 

model (3), we get 

(12) 

z1 = y (Z) [M (/ + 1))'1•, ·r (Z) = 6
1":": [(x.jl)'1• + ~0 xJ;;;-.:c· 

By a numerical method, analogous to that of 
lvanenko and Larin 9 , we found for the limits of 
the s, p, d, and f states, Z = 1 4 19 53 

l ~ ' ' ' 
respectively, if L = [l(l + 1)] 2 , and Z = 1, 4, 20, 
55 if L = l + K Thus the Thomas-Fermi-Dirac 
model gives y( Z) with y = 0.155 (which follows 
from the simple Thomas-Fermi model) only for 
sufficiently large Z. 

In conclusion, gratitude is expressed to Prof. 
D. D. lvanenko and N. N. Kolesnikov for their 
consideration of the problems examined here. 

Translated by R. T. Beyer 
87 
* In Born and Yang 7 the parameters of the density dis­

tribution of nucleons in the nucleus are determined, in 
essence, by the number of the "first appearance". In 
this case there correspond to the numbers of the first 
appearance of the p, d and f states in reference 7, l 
of one integer less, i.e., l 0, 1 and 2, respectively. The 
numbers of the first appearance of the g, h and i states 
under the same conditions do not agree with experiment. 

** The relative difference in the expressions l + Y2 and 
[ l ( l + 1) ]~ is substantially greater for small l, since 
l(l1)=(l+Y2l-1/4. 
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J N his paper 1 on phase transitions of the second 
kind in a plane dipole lattice, Onsager obtained 

the following expression for the logarithm of the 
partition function, per particle: 

7t7t 

ln 'A(2) (T) = 2!2 ~ ~ ln (cosh 20ICosh202 

0 0 

(1) 

- sinh 261 COS <U1- sinh 202 COS (<>o) d<U d'·' 
- 1 ~2· 

Here() = f / kT {n = 1, 2);] is a constant 
n n n 

characterizing the interaction between neighboring 

dipoles, and Tis the temperature. Analysis 1•2 

shows that Eq. (l) leads to a logarithmic 
divergence in the second derivative with respect 
to temperature, determined by the equation 

cosh 201 cosh 202 --sinh 201- sinh 202 = 0. (2) 

Taking one of the interaction constants to be 
zero, f 2 , for example, Eq. (l) becomes a on~ 
dimensional integral: 

7t 

ln ),(1) (7) = ;-- ln (cosh 20 1 ~ 
2r: 

0 

c;i 

- sinh 20 COS <U) d<U = ]n cosh 0, 

which corresponds to a linear chain of dipoles. 
It would seem natural 3 to conjecture, that for 

a three dimensional dipole lattice, ln A (3 ) (T) 
would become a triple integral: 
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(4) 
]n ). (3) (T) = "2~3 ~~~In ( cosh 261 cosh 262 cosh 263 - sinh 261 cos w 1 -- sinh 262 cos w2 - sinh 26a COS Wa) dwl dw2 dwa. 

0 0 0 

However, E'q. (4) is incorrect,hecause for 
certain values of the temperature, it leads to 
complex values for the free energy. In particular, 
for the simple case of an isotropic lattice 01 = 02 

= 0 = 0, it may he easily verified that the func-
3 • . • 

t . sh3 20- 3 sinh 20 has a negative mm1mum lOll CO 

at 0 = l/4 Ar sinh 2. 
It turns oult that even the following more general 

form for ln A <3 > (T) will not give the desired result. 
We shall show that taking ln >.< 3 >(T) to be the fol­

lowing triple integral 

:t'":":it 

Jn i,<a• (1) =~\~In F(61, 02. fl3; (5) 
0 0 0 

will not lead to a phase transition of the second 
kind if the function F(Ok; (J)k) (k = l, 2, 3) obeys 

the following conditions: l) it is non-negative for 
all real values of its arguments; 2) F (0 . (J) ) has 

k' k 
no essential singularities. 

The possible Curie points T c are given by the 
zeros or poles of the function F ( Ok; (J)k f.' Let 
F(Ok; (J)k) = 0 at T = T c and (J)k = (J)£. This 

point is at the same time a minimum of F ( Ok; (J)k). 

In the neighborhood of this point F is a positive 
quadratic fom1 in the variables 'T= T- T c and 
xk = (J)k - (J)~,which by a rotation of the axes xk' 

can he brought into the form: 

!l :! 

F= a-.2 + ~ b,.x~ +-:- ~ f"X", 

k=l k~,~l 

where a, b ~~ are functions of the structure 
k' k 

constants. 
The character of the singularity in ln A{T) is 

determined from the integral of ln F over a small 
volume o containing the point xk = 0: 

tJ-(r) -~~~In F(-:-. xh)d"x. 
3 

(6) 

(i) 

We. transform variables according to the defini­

tion yk = vb;- ( xk + ck/2bk -r ). Considering -r 

to he sufficiently small, we integrate over a sphere 

of radius· r » ( c k / bk) 'T with the center at the 

point yk = 0. Changing to spherical coordinates) 

we obtain 
3 ., (8) 

r ( c-
fJ.('t")=.'J·rt~ln (a'•2+ p2)p2tJp a',-,a- ]4bi>o) 

0 h--1· k 

After some simple manipulations we find that 

1 r 
fl. (T) = P(•) + AT3 arctan---=--, (9) 

Va' • 

where P ( 'T) is an analytic function of 'T -and A is 
a coefficient. Eq. (9) shows that In A( 3)(T) 
together with its first two derivatives are con­
tinuous, while the third derivative has a finite 
jump. 

Similar calculations show that the following ex­
pression for In >.fnJ (1) 

Jn )_(n) (7) = ~ ~ ... ~In F (6,.; wk) dw1 dw~ . .. dw,. (lD) 

(k = 1, 2, ... , n). 

where the function F obeys the same conditions as 
before, gives a logarithmic divergence in the n' th 
derivative if n is even and a finite jump for odd n. 

So far we have assumed that not all the second 
derivatives of F are zero at the point where 

F (0 · (J) ) = 0. Suppose now that all derivatives 
k' " 

up to order 2s are zero. Then in the neighborhood 
of its zero F is a positive, homogeneous form of 
2s' th degree. We shall show that no divergences 
can occu; before the third derivative of In A( 3)(T). 
The second derivative of 11 ( -r) at -r=O is 

(11) 

The numerator and denominator are homogeneous 
polynomials in the variables xk of degree 4s- 2 and 

4 s respeetively. Let us change to spherical co­
ordinates p, .& , ¢. Then F 2(0; (J)k) =p48F;_(O,.&, c# •. 
where F 1 is the value ofF on the unit sphere in 
the space of the x Since the function F is 

k' 
positive and continuous on the unit sphere, 1/F~ 
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is bounded. The numerator can be written in the 
form p 45 " 2 F 2 ( &, ¢). Renee the integral (ll) does 
not diverge, as claimed. A similar proof shows 
that in a space of any dimension n, all derivatives 
up to the ( n - l) th, inclusive, are continuous. 

The above suggests that the presence of a phase 
transition of the second kind in Onsager's plane 
lattice is connected with the dimensionality of the 
space. In particular, we may expect that Onsager's 
model does not give a phase transition of the 
second kind in a real three dimensional lattice and 
hence cannot explain the properties of a ferro­
magnet. This might indicate that in the three 
dimensional case not only interactions between 
neighboring dipoles need to be considered. 

In conclusion, I would like to express my thanks 
to Prof. lu. B. Rumer for his valuable suggestions 
and discussions during the course of this work. 

Translated by R. Krotkov 
89 
* In the case of a one dimensional lattice, the cor­

responding function cosh 2 e- sinh 2 e cos w has no 
zeros. Hence the theory does not give a phase transi­
tion in this case. 
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I N autumn of 1952 we measured the spatial dis­
tribution of nuclear-active particles in broad at­

mospheric showers of cosmic rays at 3860 m of 
altitude. For this work we used a special 
arrangement with a considerable number of co­
incidence counters. This enables us to locate 
the axis and the number of charged particles of 
broad atmospheric showers which were of interest 
to us. The flux of nuclear- active particles was 
determined by the number of nuclear electron show­
ers, produced in lead by the penetrating particles 
during the passage of a broad atmospheric shower. 

IUCM -
Fig. 1 

The equipment for the observation of nuclear 
electron showers (Fig. 1) consisted of three groups 
of coincidence counters separated by shields of 
lead 6 em thick. The presence of a 20 em thick 
lead shield on the top of the counters allowed a 
reliable separation of penetrating particles be­
longing to the broad atmospheric shower from its 
photo-electronic component. The lead shielding 
on the bottom and the sides was 6 em and 14 em 
thick respectively. 

The formation of the nuclear electron shower was 
characterized by the appearance of a discharge in 
two or more counters, placed in one row. The cor­
rection in lead due to J.l. mesons has been based on 
measurements of the number of o showers produced in this ap­
paratus by the hard component of the cosmic rays. 

The relation between the observed number of 
nuclear electron showers produced by particles from 
broad atmospheric showers of a given energy at a 
given distance from the shower axis and the total 
number of broad atmospheric showers of same 
energy and same axis location can be expressed by 
the flux density of nuclear-active particles in the 
following way: 

N 
A~ = 1 - exp (- pcr (1 - r-xo..)} 

Here p is the flux density of nuclear-active particles, 

a is the counter surface recording the nuclear 
electron showers, x is the amount of matter in 
which the nuclear electron showers are produced, 

A. is the interaction path for nuclear-active particles 
(A= 160 gm/ em 2 Ph). It is assumed that the 
probability of recording a nuclear electron shower 
originating in lead is unity, which may lower the 
flux density of nuclear-active particles*. The 
results of flux density rr•easurements of nuclear­
active particles obtained this way for different 
distances from the broad atmospheric shower axis 




