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TABLE 

I Absorption 

/Ul······· I 
Measurements of Other 

Density Frequency V 
Substance Coefficient Investigations 

pin in 106 cps in 
Velocity v 1 

I v in m/sec 3 I in m/secJ a in em 
-1 

gm/cm -1 
em 

Armco Iron 7.85 0.66 0.0024 
6 0.024 
10 0.038 

Plexiglass 1.19 0.66 0.11 
1.4 0.21 
6 0.40 
10 0.55 

absorption ha~ not been tested experimentally. 
Therefore the investigation of the propagation of 
ultrasonic waves in different solids over a wide 
range of frequencies and temperatures presents con­
siderable scientific and practical interest. 

In this letter we report the results of measure­
ments by the pulse method of the absorption and 
propagation velocity of ultrasonic waves over a 
frequency range from 0.66 to 10 me in two sub­
stances: Armco iron and plexiglass. The experi­
mental arrangements and techniques of measure­
ment will be reported separately. 

The results of the measurement of the absorption 
coefficient of ultrasonic waves a, and the propa­

gation velocity v in the two materials are listed in 
the table. 

From the values obtained in the frequency range 
0.6 - 10 me, it follows that the ultrasonic ab­
sorption coefficient in Armco iron is directly pro­
portional to the ultrasonic frequency. Investiga­
tions 1 of ultrasonic absorption in magnesium over 
a wide frequency range also gave a linear fre­
quency dependence. 

The data for plexiglass indicate that the ab­
sorption increases proportional to y v , which is 
in agreement with the results of other authors 2 ' 3 • 

The measured velocity of the .11ltrasonic waves in 
plexiglass at v = 10 me is also in agreement with 
the values in the literature 4- 6• There were no avail­
able data on ultrasonic absorption in Armco iron. 
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I N the relativistic covariant equation which de­
scribes the coupled motion of two interacting 

particles 1- 3, one ascribes to each particle its own 

time: to the first particle t 1 and to the 
second t 2 • The question in what manner 

are these times t 1 and t 2 related to each 
other is of interest. If the external fields are 
stationary, we can introduce a general time T 
=(t 1 + t 2 )/2 and a relative timet= t 1 - t 2 ; for 

simplicity we assume that the masses of the 
particles are equal (this corresponds, for example, 
to the case of positronium ). We are interested in 
how the wave function of different times ( t =f. 0) 
can be found by means of the wave function of the 
same times ( t = 0 ), in other words in the develop­
ment of a coupled system in relative time. 

We- recall, for example, that the development of 
the wave function in time of a freely moving particle 
. d "b db h -(i!"h)Ht 1s escn e y t e operator e 

<¥ (t) = e-<ifn)Ht <¥ (0), (1) 

where H is the Hamiltonian, independent of time. 
If we know (for example by means of some measure-
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ments performed on the system) the wave function 
at the initial moment of time, then Eq. (l) determines 
its value for all future moments of time. It is 
known that in the theory of a vacuum there occur 
causal functions of propagation which describe a 
causal development in time, different from (l). Ac­
cording to Feynman 4 

where G is the Green's function which satisfies 
the equation for the operator of the field with 0-
function on the right side. If G can be computed 
by means of the theory of residues, under the as­
sumption that the mass of the particle has an 
infinitesimally small negative imaginary part, we 
obtain 

(3) 

where A(t) is a generalization of the projection 
operators: 

with IH I= y)/2. 

IHI-H. 
21Hi , 

The effect of A( t 1 ) on the wave function 1/J (0) 

with t > 0 is to cut off all negative energies and 
with t 1 < 0, all positive, and also to change the 
sign of the wa.ve function: 

A (t) bo tJi (0) =A (t) bo ~ cniJin = ~ Cn<jin; 
n En>o 

A (t) lt<o ~ (0) =A (f) ko ~ c,I!Jn =- ~ cn~Jin· 
n En<o 

(4) 

(5) 

Thus the posiltive frequencies are propagated in the 
future and the negative ones in the pastS. 

In the theory of two bodies the operator of 
evolution in r;~lative time t = t 1 - t 2 can be found 
in any case if the interaction is instantaneous, for 
in such a case the moment t 2 = t 1 ; t = 0 is singled 
out by the interaction. In this case an equation of 
the type used in references 1 - 3 has the form 

{F1F2 + n,K (xb x2) ~ (t)} IJin (x1, x2, t, T) = 0, (6: 

where K(x , x 2 )o(t) is the operator ot the instan-
1 

taneous interaction * 

Insofar as o(t) enters the second term of (6) one can 
write 

(8) 

or 

Further, 

Q{2) = A(2) (t2 - I~) exp {- ~ H2 (t2 - I~)}~ (x2 - x~). 
The indices (l) and (2) refer to the first an·d second 
particles respectively. Inserting these values into 
Eq. (9), integrating over t ', and using o(t '), we 
obtain 

~(xi, X2, t, 7) = (2rr~"h2 ~A (l) (11 - T') A (2) {l2- T') X 

X exp {- ! HI{11 - T')} exp {- ! H2 (l2- T')} X 

x exp {k1 (x1 - x;) + ik2 (x2 - x~) } (10) 

X inK (x~. x~) ljJ (x~. x~. 0, T'). 

We give the integration of T' for the two case.$: 
t 1 > t 2 and t 1 < t 2 , by dividing the range of integra­
tion into the subintervals , for example, for t > t 

1 2 
[-oo, t 2 ], [t 2 , t 1 ] and [t 1 , oo], In this way we take 

it into account that the insertion of T = :!:_ oo in the 
resulting equation yields zero, due to the presence 
of the factors A0 > (T 1 - T) and A( 2 ) (t 2 - T )and 
'm = m - io for o-+ 0. Ther. for the staionary state, 
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which corresponds to the total energy En' we obtain: 

y;n(XI,X2, t)={A(l)(t)exp [- ~ (H1 - ~n)tJ + 

+ A (2) (- t) exp [ ~ ( H2 - ~n) t ]}xn (XI, x2), 

where 

Xn(XI, X2)=-~ 
(27t)6 

xS exp { ikl (xi - x~) + ik2 (x2 - x~)} da ki da k2 

En H 1 -H2 

(ll) 

(12) 

'Pn-(xh X2) = y;n (xi, x2, t) ft=O­

Equations (ll) and (12) establish the connection 
between tfJ ( ) d . . n x1, x 2, t an cpn (x 1 , x 2 ), and they 
Indicate the form of the unknown operator 8,/t), 
t/J,/x1. x2, t) =en {t) cpn {x1' x2), which describes 
~he causal development of the coupled system in 
relative time t = t 1 - t 2 • If we multiply {12) by 

i 
exp { -/i En t } , then the general wave function 
can be written in the form: 

-

y;n (t, T) = exp {- ~ En r} y;n (t) 

(I) { i \ ( i } A+· exp - F HltiJ exp \--,;(En- HI) /2 

-A~2) exp{- ~ H2t2}exp {- ~ (En--H2)t1} Xn• 

t>O; 

A(;) exp {- ~ H2t2} exp {- ~ (En- H2) t1} 

-A~) exp {- ~ H1t1} exp {- ~ (En- H1) t2} Xn• 

t<O. 

We can say that the wave function corresponds 
either to the propagation of the first particle into 
the future in the form of a free wave with positive 
frequency A~1 > (the frequency H 1 =I H 11) and ofthe 

second particle into the past with a much more 
complicated sort of "coupling" (the frequency is 
En - H 1 ), or to the propagation of the second 
particle irtto the past in the form of a free wave 
with a negative frequency (the frequency : - H 2 

= I H 2 1) and of the first one into the future with a. 
much more complicated sort of "coupling" (the 

frequency: En -H 2 )**. 
This resul,t is a generalization of the result which 

was obtained by Salpeter and Bethe for the non­
relativistic case, and it takes into account a new 
possibility which is connected with the propagation 
of particles with negative frequencies. 

The opemtor of the causal development in time 
e {t) may be successfully applied to the integration 

over relative time of the matrix elements which 
occur in the theory of excitation and, in particular, 
for finding the effective excitation energy in the 
theory of two bodies (see reference 6 ). 

• Instead of K(x 1, x 2 ) one can also take the 
phenomenological potential. 

"'*The future and the past of each particle is counted 
from the moment of interaction. 
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I N the present work the "equilibrium" spectrum 
of photons generated in cascading electro­

magnetic processes is calculated, taking into ac­
count not only radiation damping and the creation of 
pairs, but also ionization losses and the Compton­
effect. 

The "equilibrium" spectrum of photons e (E) is 
determined by the following method: 

00 

8 (E) = ~ 8 (E, t) dt, 
0 

where ® { E, t) dE is the average number of photons 
in the energy interval ( E, E +dE) at a depth t. 

The approximate expression for e(E) occurs in 
Belenko's book 1 [Sec. 17, Eq. (17.8)]. For the 
calculation of this magnitude for the probability of 
the Compton-effect Wk. [reference 1, Eq. (2.20)] 




