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The formulation and the foundation of a variational prineiple of magnetostatics with 
ferromagnetics in a field of currents is given. A direct method of analysis of magnetic 
fields in a general case of non-linear dependence on the magnetic permeability of a mag­
netic field is worked out. 

THE present article is devoted to the general 
solution o£ the problem of magnetostatics with 

ferromagnetics:. 
Let us assume a closed magnetostatic system in 

space, containing n finite ferrom~netic domains 
V 1 , V 2, .... V n' limited by the surfaces S 1, S 2, •... , 

Sn, and having m finite domains of currents w1 , w 2 , 

, ... . wm, limited by the surfaces a 1 , a 2 , ... . am; in 
the domains wi, the magnetic permealiilities p.(H,x, 
y,z )are uniquely determined and the induction field B 
is given by the relation B = p.H; also given in the 
domains wi is the current density distribution j i 
( x, y, z) satisfying the condition div ji= 0; outside 
the ferromagnetics p. = l (using the absolute system 
of units). 

To a system so defined correspond the following 
physical conditions: l) The ferromagnetics are iso­
tropic; 2) p. is determined by the magnetization 
curves; 3) The ferromagnetics may have inhomo­
geneously distributed magnetic properties. 

The problem is to determine the induction field 
B of the system. 

The Maxwell equations satisfying such a mag­
netostatic system have the form: 

curl H=~hrj· 
c ' 

div B = 0; B = p. H, 

where the parameters p. and j on the surfaces of 
discontinuity s have to satisfy the boundary condi­
tions* 

[Hr]s = 0; [Bn]s = 0, 

where H T is the tangential component of the field 
H, and Bn is the normal component of the field B. 

The integration of Maxwell's equations when the 
boundary conditions are given, represent insur­
mountable difficultieS. ,2 because of non-linearity 

1 
I. E. Tamm, Foundations of the Theory of Electri­

city, Moscow, 1949; pp. 327, 227 
2 S. V. Vonsovskii and Ia. S. Shur, Ferromagnetism, 

Moscow, 194& p. 27 

* The symbol [A] = 0 represents the difference of the 
value of the paramet~r A on both sides of the disconti­
nuity surfaces. 

of the relationship between B and H. Up to now, 
excluding the case of toroid and ellipsoid forms, 
the analysis of magnetostatic problems has been 
confined to idealized ferromagnetics3, for which 
p. = const or p. =oo. 

1. VARIATIONAL PRINCIPLE** 

To solve the given problem it is expedient not 
to start from Maxwell's equations but to put as a 
base a variational principle, which can be stated 
as follows. Among all possible solenoidal induc­
tion fields for a real closed magnetostatic system 
the sum E of its magnetic energy W and the poten­
tial function U of the currents has a minimum. 

The mathematical expression of this principle 
leads to the equation 

o£ =a (W + U) = o, (1) 

under the condition 

divB = 0. (2) 

Here 
B 

W = ~ wd V = ~ ( 4~ ~ ~dB) d V, 
H-lt=O 

(3) 

where w is the magnetic energy density, dV - the 
volume element (the volume integration is performed 
over the whole field of the system); 

li 

:1 m ~ 1 m ~ . U =- --~ <I> dl =--""" <l>']·ds eLl c""'-1 ' ' (4) 
i=l 0 i=lSi 

where li is the total current ~ in the domain wi, ds­
element of the surface normal to j, <I> is the flux of 

370 

3 G. A. Grinberg, Selected Problems of the Mathe­
matical Theory of Electrical and Magnetic Phenomena, 
Akad. Naulc SSSR, 19-ll 

** The variational principle and its formulation giving 
the possibility of analysis of magnetic fields by the 
direct methods of variational calculus, were discribed 
by one of the authors (Skobelkin). 

~ If the current domain Wi is of the form of a solenoid, 
then I; means ampere-turns, and s is the cross-section 
of the solenoid. 
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B through the surface, limiting the current density 
j. The physical meaning of the function U is given1 

by the fact that the work done by the forces due to 
magnetic field for a virtual change of this field is 
equal to a decrease of the function U. From Eqs. 
(l) and (2) in particular, we obtain Maxwell's 
equation: 

47t 
curl H = -j. 

c 
(5) 

The application of direct methods to obtain a solu­
tion of Eq. (l) under the condition (2), is most ef­
fective in conjunction with systems which have a 
plain-parallel or an axial symmetry. Therefore 
in the following we are going to investigate only 
such systems. 

l. SYSTEM WITH AN AXIAL SYMMETRY 

Let us take the x axis as symmetry axis of a 
magnetostatic system using cylindrical coordinates 
r,O,x. 

Let <I> (r,x) he the flux of B through a circle of 

radius r = y'x2 + y2 in the plane x = const. Let 

B _ 1 a<D. 
-~ - 21rr fir ' 

1 o<D B =---· 
r '21rrdx ' (6) 

B, calculated from Eq. (6), satisfies Eq. (2) iden­
tically. 

For a system with axial symmetry 

E = ~ ( w- 2~/~) 21tr dr dx. (7) 

The integrand in Eq. (7), 

L =2...:r w--L , ( 1 "<D) 
27tc r 

is the Lagrangian of the magnetostatic system 
with axial symmetry. Using the identity 

HdB = dB2 I 2p. 

(8) 

(9) 

and expressing p. through B 2 (e.g., using the mag­
netization curve), p. = B/H = p.( B2), we can write 
Eq. (8) as 

(10) 

where,as follows from Eq. (6), 

1 [(o<D)z (o<D'2] B2 = 47t2r2 ox + (ii") . {11) 

The condition for a minimum gives the Euler's 
equations for each domain where the flux function 
<I> is twice differentiable: 

oL o [ oL ] o [ oL ] 
d<D -ox a(o<D;ox) -or o(iJ(J);ar) 

1 . 1 iJHr 1 oHx 
=- c 1 + 47t ox - 47t a;:-=0. 

From {12) we then obtain (5). 

2. PLANE PARALLEL SYMMETRY 

In this case, 

B• 

iJ<D By=--· 
dx ' 

(12) 

(13) 

L = J._ \ dB2 - .!._ .11> - L ( . II> iJ<D iJ<D) 
47t ~ 2fL(l:l2) c 1 - 1. •ox • ay • 

0 

Euler's equation, corresponding to the minimum 
value of E, then has the ,form: 

iJL iJ [ iJL ] iJ [ iJL ] 
o<D- ox iJ (d(J)jdx) - iJy d (iJ<D/dy) 

_ 1 . 1 oH y t iJH.t: 
- -c 1 + 47t tOX - :47t iJy = 0,, 

from which Eq. (5) follows. 

For the Lagrangeian of type (lO) and (13) , a 
strong minimum of corresponding functionals 
exists and the uniqueness theorem can be applied 
which makes it possible to postulate a minimizing 
sequence <1> 1 • <15 2 ... <I>n···which, by Ritz's method, 
gives as limit <I>, when the complete set of func­
tions of the given magnetostatic system is ob­
tained. 

One essen~ial advantage of this direct method of 
solution of magnetostatic problems on the basis of 
a variational principle is the non-existence of 
complicated explicit non-linear boundary conditions: 

[~B .. ] = 0; [BnJs. = 0, (14) 
(.L s, l 

which have to be taken into account when solving 
the same problem using Maxwell's equation. The 
equation div B = 0 leads to the unique linear con­
dition for the function <I> on the discontinuity 
surfaces Si: 

[<D]si = 0. (15) 

The conditions [ B ]5 indeed are consequences 
n i 

of Eq. (15). Considering the problem of determina­
tion of B from the variational principle (l) under 
the condition (2) as a discontinuity problem of 
second order variational calculus4 and determining 

4 R. Courant and D. Hilbert, Methods of Mathematical 
Physics. 



372 SKOBELKIN AND SOLOMKO 

by known methods the conditions on the discon­
tinuity surfaces, we obtain that, for the real field, 
the conditions [ _l B r ] = 0 on discontinuity 

surfaces are identically satisfied. 

2. CONSTRUCTION OF THE COMPLETE SET 
OF FUNCTIONS 

We divide the magnetostatic system into such regions 
o, where p. and j do not possess discontinuities, in 
particular, the overlapping of V and w represent 
such a region 8. We further assume that on some 
surface r, endosing the magnetostatic system, the 
magnetic flux <I> = 0. This boundary condition upon 
the closed magnetostatic system is always satis­
fied at infinity. When the systems are completely 
screened, and if it is possible to neglect the dis­
persion of flux outside, the condition <I>= 0 is 
satisfied on the outer surface of the screen. 

Let us construct the sequence of functions, 
satisfying the boundary condition (15), in which the 
first derivatives may be discontinuous on the 
limits of the region 8. This set of functions then 
defines the complete o set. 

Let (8) ,.(o) r (8) 
cpl , i'2 , · · · ' ~ n ' · • • ( 16) 

be a complete set of functions, determined in re­
gions o, satisfying the conditions rp~8) =O(k =< 1,2, ... ) 

on the surfaces S 8 enclosing regions o, and let 

(17) 

be a complete set of continuosuly differentiable 
functions, determined in the domain enclosed by 
surface r. on which they vanish. 

It then is posJ5ible to show that the totality of 
functions {rpk8>, t\Jk} represents the complete 8- set. 

For the sake of simplicity of analysis we shall 
limit our· investigation to cases where 8 regions 
are defined by two coordinates e.g., r,x (system 
with axial symmetry) or x,y (system with plane 
parallel symmetry). Let <I> be any arbitrary function 
satisfying following conditions: 

l) <I> and its first derivatives are defined and are 
continuous inside each region o; 

2) On the limits of regions 8 condition (15) is 
satisfied 

3) <I> = 0 on the r surface. 
Let us represent <I> as a sum of two functions 

<1>0 and 8where <1>0 and its first derivatives are 
continuous inside each region 8 and vanish on the 
surfaces of o, and () and its first derivatives are 
continuos inside the domain limited by r and 
vanish on that surface. This representation is al­
ways possible when the limits of the regions o are 
smooth. One of such possible representations 

leads to the following: 
Let us construct a family of straight lines x = 

const. and let M (x), M (x), ... , Mk (x), where 
1 2 

k = k (x), be points of intersection* of the bound­
aries of surfaces 8 with the surface r. To each 
straight line we assign a corresponding polynomial 
P (x,y) with respect to y, which coincides with the 
values of <I> at the points M1 , M2 , •.• , Mk . Then 

e = p (x,y) and <I> = <1>0- p (x,y ), where now p (x,y) 
and its first derivatives are continuous in the do­
main limited by r, and vanish on that surface. 

Since {'fk8)} is a complete set of functions in 
region o, the function <I> 0 and its first derivatives 
are uniformly approximated by a linear combination 

f <B> 1"h f · c. d · f. d · · o 9n . c e unctwn 1.':<1 an 1ts trst envattves on 
the other hand are approximated by a linear combi­
nation of lfk ' so that <I> = <1>0 + e and their first 

derivatives are given by a linear combination oE 
(6) d l (8) } 9n an 'ifr k; therefore the totality of 9n , '\l n 

represents a complete 8- set. 
Thus the problem of setting up a complete 8- set 

is reduced to the writing of a complete set of 

functions rpk8) and lfk . The principle of construc­
tion of such complete sets is known 5 ,6_ 

Let us now reduce the o- set to its normal form 
by introducing a new sequence of functions 

defined in the whole space n bounded by the sur­
facer. Let us assume 
Let us assume 

(Bn> 
lf(n in region On, ( 18) 

q;'(tl-l)(P-tk)+h = 
0 outside ok, 
'Yn(p-tl) = '\Jn, 

where p gives the number of regions o of the mag­
netostatic: system. The index k = l, 2, ... ,p for each 
fixed n starting with n = l. Thus the set of func­
tions (18) represents a complete normalized set. 
An arbitrary function <I> and its first derivatives sa­
tisfying conditions l. to 3. of the second section 
can be approximated by a linear combination of 
lfk , where derivatives of <I> may have discontinui-

5 L. V. Kantorovich arrd V.I. Krylov, Approximation 
Methods in Advanced Analysis, Moscow, 1952 

6 
I. lu. Kharik Doklady,Akad. Nauk SSSR 80, 25 

0951) 
* It is possible that in this case a part of the boundary 

of o regions coincides with a straight line, but it is al­
ways possible to choose such lines which intersect 8 
at a finite number of points. 
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ties on the limits of regions a. 
It is possible to show in particular, using 

Weierstrass's theorem on uniform approximation of 
a continuous function by polynomials, that in a 
general case of magnetostatic problems, the com­
plete system of functions (18) may be determined 

(llul 
by following sequences of 9n and t/Jn: 

lj!l = q, lj!2 = qx, Y3 = qy, lj!4 = qz, Y5 = qxy, 
'f6 = qxz, lj!7 = qyz, 'fs = qx2, .... ; 

(llul (Ilk) (8kl (Bk) 
91 = q8 ~<' 92 = qs"X, 93 = qs"Y, 9J = qs/I.Z, 

(Bul (B kl (Bul 
95 = qB"xy,9s = q8uxz, 97 = q8,?Z,. . , 

where q8k(x,y,z) = 0 is the surface equation of a, 
and q (x,y, z) = 0 is the surface equation of r 
limiting the domain n. 

Similarly, performing the transformation of varia­
bles x,y, z, it is possible to construct other com­
plete sets of functions, e.g., trigonometric poly­
nomials. 

3. DEI'ERMINATION OF MAGNETIC INDUCTION 
FLUX BY DIRECT METHOD 

Let us represent the function <ll by the follow­
ing form: 

n 

<D" = ~ rx" '¥", 
k=1 

( 19) 

where lfk is the complete normalized set of func­

tions and ak constant coefficients, functions of n. 
<lln satisfies identically the boundary conditions 

(15); therefore one can take <lln as the nth approx­
imation of the variational problem using Ritz's 
method5 . The problem of determination of the 
nth approximation of <ll reduces to integration of 
the Lagrangian L over the domain n. Substituting 
<ll n ·and its partial derivatives into L and perform­
ing the integration, we obtain: 

E = E {rx~t}. 

The condition for a minimum of E leads to trans­
cendental equations for solutions for ak 

iJE / orxu = 0. (20) 

Let us introduce the components of current poten­
tial function U , defined by the following relation: 

m 

uh = _ _!_ ~ r 'Yk(s)j;ds. (21) 
c . ~ 

<=1 s; 

Then the nth approximation of the current potential 
function U is represented as a linear combination 

n 

ull = ~ rxkuk. 
k=l 

(22) 

The system of equations (20) with the condition 
(22) takes the form: 

iJWforx"=-u" (k=l,2, ... ,n). (23) 

From Eq. (23) one can see that the unknown coef­
ficients ak are functions of u i( i = l, 2, ... , n ). 

This indicates that, for a given geometrical confi­
guration of the magnetostatic system, the flux <ll 
is determined exclusively by components uk of the 
current potential function U. Consider·ing ak as 
functions of ui , and differentiating Eq. (23) with 
respect to u k , we obtain 

n 
"" a2w drx; 
.LJ d.,..---d. -iJ =- 1 (k = 1, 2, ... , n) (24) 
i=l rxk rx; uk 

The set of equations (24) is a system of linear equations 
in Sai which can be integrated by the method of sue-
~ 

cessive approximations, taking a k = 0 and u. = 0 as ini­
tial conditions. The above conditions corre~pond to 
vanishing magnetic induction in the absence of the field 
of currents. In the particular, but practically important 
case when the current densities are everywhere the same, 
ak can be taken as functions of j. Indeed from Eq. (21) 
it follows: 

m 

llh = (-+ ~ ~ 'Yk (s) ds )i = uhj, 
<=1 s; 

where 

lih =- ! ~ ~ 'F"(s)ds, (25) 
i=l s; 

n 

Un = i ~ rxkuk. (26) 
h=l 

Let us introduce the specific potential function of 
currents relative to unit current density 

V= U/}. (27) 
Then 

" 
~ -U,= !Xkllh' (28) 

h=l 

where uk represents the components of the specific 
potential function of currents. In this case the 
system of equations (24) takes the form: 

n 

"" d2W drx; - -- - (29) .LJa a d'- n (k-l,2, ... ,n). 
i=l rxh rx; J 

We normalize the system (29) by introducing the 
Jacobian of that system: 
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aw -, .... , 
a~ 

D ( a 1, a 2 , . . . an). 

Writing 

(30) 

The Jacobian (30) is not zero identically. Indeed, 
if the Jacobian (30) were zero, then a 1 , a 2 ... an 
would be functionally dependent; this contradicts 
the definitions of '1'1 , '1'2 , .•. as a complete set of 
functions. Solving Eq. (29) for derivatives we ob­
tain 

(31) 

-- ( aw aw aw -- aw aw) J 
Di = D ~ ' -a- ' ... ' -a--' U, -d. oc. ' ... ' --iJoc D ( cxl' cx2, ••. ' <Xn), 

uocr OC2 oci-1 t+l n 
(32) 

We get 

dcxi/ dj =- Di /D. (33) 

Let us now integrate Eqs. (33), taking a.= 0 and 
' j = 0 as initial conditions. Using the successive 

approximation method and taking as zeroth approxi­
mation a~= O(i = l,2, ... n ), we get: 

i --

cx11) = - ~ ( ~~ )0 dj; <2> f(vi) d ·. 
0 

<Xj =- 3 D 1 J, 
0 

i -
•• • ; <X(m) = - \ (!2.)' dj' • 

1 ~ D m-1 ' • • · j 
0 

- - (k) 
where ( D i I D ) k = D i I D when aF a i . 
The exact valm! of a. is obtained as the limit of 

' sequence a<7> when m tends to infinity. 
It is possible to apply the same method when 

j= j(x,y,z). Consider the system of equations: 

aw I d<Xh ==-AUk (k = 1, 2, ... ' n), (34) 

where A is an arbitrary variable parameter ranging 
from 0 to l. 

Differentiating Eq. (34) with respect to A, we get 
n 

""' iJ2 w iJa.i k.J iJa. iJa.. (fA = - uh, (35) 
i=•l h I 

Denoting the denominator of Eq. (36) by D i' we 
have 

A D. 
<Xj = - ~ ( ; ) dl.; 

0 

(37) 

when A= 0, ai = 0, ai depend on A in (37). Again 

applying the method of successive approximations 
we obtain: 

A D 
cxP> (f.)= - ~ (; )

0 
dl.; 

0 

). 

(X~2) (1.) = - ~ ( ~ )1 dl.; 
0 

. . . . . . . . . . . . 

The limit of sequence a i , when m - oo gives the 
exact value of ai(A), satisfying system (34). 

The complete set of ai, satisfying system of 
equations (23) is obtained by setting A = l. 

The roots ai of the system of equations (20) 
then determine the nth approximation of the mag­
netic induction flux cpn , and the exact value of 
the flux cp is given by the limit of sequence cpn when 
n--+ oo. 

Translated by G. Cvijanovich 
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