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The zone theory of a one-dimensional liquid model1 proposed earlier by the author is ex­
tended to a three-dimensional model. By solving the Schrodinger equation in a deformed 
coordinate system, it is shown that during melting of a crystal, the electron energy spectrum 
retains its zone structure, in accordance with the experimental facts. 

1. INTRODUCTION 

A S is well known, the energy spectrum of elec­
trons in solids possesses a zone structure. 

On this basis we are able correctly to explain the 
electrical conductivity of metals and semicon­
ductors and a whole series of other phenomena. 
Theoretically, the occurrence of a zone structure 
is demonstrated for motion of the electron in a 
strictly periodic field, i.e., for the case of long 
range order. On the other hand, the electrical 
conductivity of metals and semi-conductors does 
not change dm·ing melting, despite the disap­
pearance of long range order. This leads one to 
the idea that the zone structure of the energy 
spectrum is related, not to the long range, but 
rather to the. short range) order of location of atoms 
in a body. 

In paper l * we showed theoretically, for the 
simplest model of a one-dimensional chain of atoms, 
that for small disturbance of short range order and 
complete disappearance of long range order, the 
energy spectrum retains the zone character. In the 
present paper, the theory is extended to the more 
realistic case of a three-dimensional model. All the 
assumptions and the method of calculation are the 
same as for the one-dimensional model, so we shall 
repeat the discussion only very briefly, noting 
special features of the three-dimensional case. 

Let us suppose that initially we have a crystal 
with a regular arrangement of atoms, so that the 
potential energy of an electron in the self-consist­
ent field of the crystal is a periodic function 
v (X X ) f C • d' 1 , 2 , x 3 o artesian coor mates x 1 , x 2 , x 3 

fixed in the crystal. This periodicity is meant in 
the sense that the potential is periodic along 
certain crystallographic directions, which either 

1 A. I. Gubanov, J. Exper. Theoret. Phys. USSR 26, 
139 (1954) 

* The formulas of paper 1 will be cited as Roman 1. 

364 

coincide with the axes x 1 , x 2 , x 3 , or, in the case 

of crystals of lower symmetry, are described by 
linear equations in the x 1 , x 2 , x 3 coordinate 

system. 
X-ray and electron diffraction studies show that 

liquids possess short range order. Upon melting it 
may turn out that the short range order is practically 
kept unchanged, or it may change abruptly if, as 
in the case of water, the number of nearest neigh­
bors changes. We shall suppose that short range 
order always changes very little during melting. 

If the real crystal has essentially different short 
range order than the liquid, then we shall consider 
the melting of a certain hypothetical crystal with 
the same short range order as the liquid. In this 
connection, we suppose that each unit cell of the 
crystal suffers only a small deformation during 
melting, leading to slight changes in the lengths of 
the cell edges and the angles between them. The 
percentage deformation of the cell is of the order 
of a small quantity £, and is a random variable. 
For simplicity, we shall assume that during 
melting there occurs no macroscopic deformation of 
the crystal, in particular, no change in its volume. 
In this case all deformations can have either sign 
with equal probability. 

As shown in reference l, the result of the super­
position of small deformations of cells, according 
to the law of addition of random variables with 
varying sign, is the disappearance of long range 
order at distances of the order of l/£ 2 from unit 
cells. In the three-dimensional case, this means 
not only that the probability of location of a particu­
lar atom is smeared over a region larger than the 

uriit cell, but also that distant cells are turned rela­
tive to one another through arbitrarily large angles. 

During melting, as a result of the deformation of 
the lattiee, the potential field V(x 1 , x 2 , x 3 ) under­
goes two types of changes. First, all the maxima 
and minima of V are shifted in space parallel to 
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the displacement of the atoms. Secondly, because 
of the small disturbance of the short range order, 
the value of V changes by a small amount tl V. As 
in the one-dimensional case, changes of the 
second type do not destroy the periodicity of the 
potential, hut lead only to small corrections to the 
periodic field which can easily he taken into ac­
count by ordinary perturbation theory. We shall 
therefore not consider these changes at all, and 
shall suppose that the entire change of the po­
tential field during melting is just the result of a 
shift in space of points with given potential paral­
lel to the displacement of the atoms. This as­
sumption is equivalent to the hypothesis of de­
formable ions which gives a good approximation for 
the calculation of the interaction of lattice waves 
and electrons in the theory of metals. 

We introduce a distorted coordinate system .;'1 , 

.;:2 , .;: 3 in such a way that the coordinate curves in 
the liquid pass through points with the same values 
of the potential as do the corresponding coordinate 
lines x 1 , x 2 x 3 in the crystal. By suitably select­

ing the variable scale for the coordinates ~ we 
can arrange for the potential to he periodic in the 
coordinate system ~ in the sense that the potential 
will be periodic along certain crystallographic lines 
(curves) which either coincide with the coordinate 
curves .;: or are described in this system of co­
ordinates by linear equations. The coordinates .;: 
are slightly non-orthogonal. 

Since corresponding elements of the coordinate 
lines xo: and .;o: ( o: = l, 2, 3) can be turned through 
large angles relative to one another, we cannot in 
the three-dimensional case introduce ratios of dx"' 
and d.;"' of the type of equation I - (5). Powever, 
for what follows it is not necessary to know com­
pletely the transformation from the coordinates x to 
the coordinates f, it is sufficient to give the metric 
tensor in the .;: coordinate system. Since, during 
melting, each element of the crystal undergoes a 
small random deformation, the diagonal and non­
diagonal elements of the metric tensor must have 
the form: 

ex, P::::::::: 1, 2, 3. 

Here the yo:{3 are random functions of the co­

ordinates, of order of magnitude unity. (Some of 
them may be of lower order, or be equal to zero.) 
Unlike the one-dimensional case, we cannot here 
normalize the Y"-f3 exactly, since their ratios depend 
on the liquid structure. 

We note that the functions y ocf3 are defined some­
what differently from the function y for the one­
dimensional case; on the basis of Eq. (l) we would 
write in place of Eq. I - (5): 

d~ I dx = 1 / V 1 + s-;. (2) 

Consequently, if we make the transition from the 
formulas derived in the present paper to the one­
dimensional case, we obtain results differing from 
the corresponding formulas of reference l by the 
numerical factor % for the first approximation, and 
1 I 3 for the second approximation. 

2. WAVE EQUATION IN THE DISTORTED 
COORDINATE SYSTEM 

The method of calculation consists in solving 
the Schrodinger equation for the electron in the 
distorted coordinate system .;:, in which the po­
tential energy of the electron is a periodic func­
tion. As in the one-dimensional case, the problem 
is solved in the adiabatic approximation -- for pre­
assigned instantaneous positions of the atoms. We 
use the time-independent Schrodinger equation 

- (1i2 12m) v2 ·¥ + V·r = E•'-!, (3) 

with the usual symbols. 
The Laplace operator in curvilinear non­

orthogonal coordinates has the form 

1 ~ iJ ( - iJ<jJ) y2 ,lJ = ~ _ aot(31/g __ 
T lr g i)~" ,..., Y 0~~ ' 

<X, {3 

where g is the determinant formed from the co­
variant components of the metric tensor, whose 
contravariant components are 

(4) 

(5) 

G f3"' is the algebraic complement of the element 

g{3"' in the determinant, i.e., the corresponding 
minor multiplied by(- l)o:+/3. 

Substitution of Eq. (5) in Eq. (4) and of Eq. (4) in 
Eq. (3), and expansion in powers of € brings the 
Schrodinger equation to the form 

/~, /', /"'-.. /-.. 

H·"-? = E·~; H = H 0 + s W + s2 ·w + ... ; (6) 
a 

, - fz2 x-, o2y 
H. () = ·'• + V (~1 ~t E3); 

'.!.tn ..._. d;-a:! ' · ' -
rJ.--:.:cl ~ 

(7) 

(8) 
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- .. "")a~" -(-1)r>i•(·,(3Y a~::;y 
ayr>·r a ayf3Y a )] 

+ a~f3 a:;r + a;y a;f3 · 

Here <><, {3, yare a cyclic pe9Putation of the 
indices l, 2, 3. The operator W contains only 
terms variable in sign, of first order in the random 
functions Y"'f3· 

The operator{;; can he separated into two parts 

A A A 

w=w'+w". (9) 

~'consists of terms of fixed sign, quadratic in the 

functions y "'f3 and is equal to 

3 .)2 
A 1r,1: ~ 2 9 ) ( • 

w' = - 2ni .LJ ("i!cx + 1 <>[3 + '!;y at,"'' ' 
ot"=l 

(10) 

;J; "contains only terms variable in sign. The ex­
pression for it is rather complicated and has no 

practical valust since w" is of the same order of 
magnitude as W, is also variable in sign, and is 
multiplied by f 2 rather than by f. 

"' 2" 2"' The operators f W and f w or f w are con-
sidered as perturbations. As in the one-dimensional 
case, they are not self-adjoint. 

Since V ( gi, ~ 2 , e) is a periodic junction, the 
solution of the unperturbed equation H 01/J = E t/J is 
the familiar solution of the problem of an electron 
in a periodic field. Let the fundamental volume 
contain G 3 unit cells as is usually done in the 
theory of metals. In order to have a significant 
disturbance of the long-range order,we must im­
pose the condition 

(11) 

The energy spectrum of the unperturbed problem 
consists of a series of separated zones, in each 
of which the electron wave vector k can take on G3 

values. To each value there corresponds a Bloch 
wave function: 

•li 0 =-.=: u exp (' i ~. k E"'.) (12) • nk nk · .LJ ex · • 
""''1 

Here n gives the zone number, the k"' are coef­
ficients giving the state within a zone, un k is a 

modulating function which has the period of the 
lattice. 

We look for a solution of the perturbed problem 
in the form of a linear combination of Eq. (12) 

( f-1 tn "'') ~ ' () <]; ~ c:'· c·• = 7, C • 'J •· ~ ~, ·, · ~ nn. ,nh., 
n. I< 

(13) 

where the coefficients in the expansion are 
determined from the system of equations : 

0 lVT 9 I E) (En k + s w nl<nk + e:-U'nknk- Cn '' (14) 

n',lc.':Fn,k 

Summation over k means summation over all G 3 

values of the three coefficients k 1 • k 2 • k 3 • 

The matrix elements wnkn 'k'and wnltn '·It' are 
calculated with weight functions equal to the 
factor of orthogonality of the zeroth order functions, 
i.e., to unity. The functions t/J~kare normalized to 
unity, i.e., 

~I tl>~k !2 d~l d~2 d~3 = 1, (15) 

where the integration extends over the whole 
fundamental domain, i.e., over G 3 elementary 
cells. 

3. EVALUATION OF THE MATRIX ELEMENTS 
OF THE PERTURBATION 

According to Eqs. {8) and (12), the matrix ele­
ment of the operator W has the form 

W n2 \ "' B 
nkn' k' =2m ~ u~k n' k' 

(16) 

X exp [i ± (k~- k") ~a] d~1 d~2 d~3 • 
at=l 

Explicit expressions for the functions Bn '1r, are 
rather complicated, hut for determining the order 
of magnitude of the quantity W n ltn 'It, it is suf­
ficient to note that B n 'Jr, consists of terms of 

the type 

iiu n' k' , iJ2u n' k' 

'("(3 lln' k' k'a. k'a• 1<>(3 df,cz k(3' 1a.(3 df,"' df,r'> ' 

The functions un '1r, have the periodicity of the 

lattice, while the functions y"'f3 which are of order 

of magnitude unity, change substantially from cell 
to cell. Therefore, differentiating u , , and y r.J 

n 1r "'JJ 

with respE~ct to ~"'gives a factor of order l/ a, where 
a is the lattice constant. The mean value of k ~is 

also of order 1/a. From the normalization condi­
tion of Eq. (lS) we have un'k"'' l/G 312 a 3 1 2 . Con­

sequently, each of the terms which make up Bn'~ 
is of order of magnitude (l/a2 ) unk"' l/G 3/2a 12 

The functions Bn'k'• which consist of a finite number 
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of terms, are of this same order of magnitude. 
To evaluate the integral in Eq. (16), we sepa­

rate it into a sum of integrals over the G 3 ele­
mentary cells. Within the confines of a single 
unit cell, the functions y oc{J and their derivatives 

have more or less definite values. Therefore, if 
unIt and un'k' are close to one another, and the 

3 . 
factor exp [ i l: ( k; - kor. ) ~or. ] is close to 

or.= I 
unity, integration over the unit cell reduces to 
multiplication by a factor of order a 3 , so that 
the integral/1 over the l'th unit cell is of order 

1 1 
\Izl -::::; (J" a• a3 = a• az · (17) 

Actually, because of the factor 

and the non-equality of the functions u and u , , 
nk n k' 

the quantity lz will be somewhat smaller -- the 
smaller, the larger the difference k"'- k;. All the 
11 are random quantities of variable sign. As dis­

cussed in detail in reference l, on the basis of 
Liapounoff's theorem, the sum of random quantities 
of varying sign confom1s to a Gaussian distribution, 
with average value zero and root mean square 
proportional to the square root of the number of 
terms. Therefore, carrying out the summation over 
the G 3 unit cells, we find that the root mean square 
of the matrix element W n kn'k' is of order 

v 1X'2 v·as n2 1 1i,2 (18) 
n k n' k' = 2m a• az = '2m(i'ls a2 

and decreases with increasing difference koc- k;. 
In precisely the same way one can evaluate the 

matrix elements of the operator{;;: Equation (17) 
is still valid for the order of magnitude of the in­
tegral over a unit cell. The integral over a unit 

cell, which enters into a non-diagonal matrix ele­

ment W :It n'k' is variable in sign because of the 

presence of the factor [. ~ ( , ) •"'] exp l Li kcx - kcx c; ' 
ot=l 

which means that its mean square value is also 
given, in order of magnitude, by Eq. (18). 

On the other hand, the integrals which enter 
into the diagonal matrix element w;k nk are fixed in 

sign. Taking the quantities r!P. out from under the 
integral sign for a given unit cell, and considering 
that 

(19) 

where the integrals go over a unit cell ( cf the 
similar evaluations in reference l ), we obtain 

W~knk (20) 

where the values of the functions Yor.f3 are taken for 

the l'th cell. Carrying out the summation over l we 
have 

' ftS ~l (2 + 2 + 2) ( 1 + k2 \) (21) 
wnknk ~2m~ Tcxcx Tcx~ Tcx-r , a2 "' · 

The dash denotes and average ov~ all cells. b 
the cas~ of a~ubic lattice, clearly ril = y~2 =ria; 

2 2 2 l y 12 = y 13 = y23 , consequent y 

ft2 (2 + 22)( 3 + k2). w' nknk~ 2m Tcxcx Tcx~ a2 (22) 

Finally, if we set r!oc = Y!f3 = l, 

(23) 

Comparing Eqs. (18) and (21) - (23), and noting 
the inequality (11), we see that in Eq. (14} we can 
neglect the diagonal element € W n knIt compared to 

£ 2 wn~ n k; on the other hand, the non-diagonal 

element£2 w' , , is negligible compared to 
nkn It 

EWnkn'k'· 

4. SOLUTION BY THE METHOD OF RELATIVE 
DEGENERACY 

If the unperturbed energy of the electron in a 
given zone, measured from the lower edge of the 

zone, is proportional to l:k! (isotropic approxima­

tion), it is easy to show that the minimum distance 
between neighboring levels in the zone is 

(24) 

In fact, if we fix k 1 and k 2, and give k 3 neigh­

boring values -- zero and ± 2 11/ a G, we get two 
energy values differing by the amount given in Eq. 
(24). The levels are highly degenerate, since their 
number does not exceed G 2 in order of magnitude, 
while the total number of electron states in the 
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zone is G3. If we take account of the anisotropy, 
this degeneracy is partially removed, so that we 
get even closer spacing of energy levels. 

Comparing Eqs. (18) and (24), and noting Eq. (11), 
we see that the non-diagonal matrix elements of the 
perturbation are larger than the distance between 
neighboring levels in zeroth approximation, so that 
we cannot use ordinary perturbation theory, hut 
must, as in the one-dimensional case, carry out 
the calculation by the method of relative degeneracy. 
The system of equations for the zeroth approxima­
tion, completely analogous to I- (23) will have the 
form 

(£~ -- E)ck + 8 ~ wkk'Ck' = 0, (25) 
k'+k 

where we have dropped the index n and introduced 
the notation 

(26) 

Setting the determinant of the system (25) equal 
to zero, and expanding according to the Laplace 
formula, we obtain an equation differing from I- (26) 
only in that the summation is taken over a vector 
index running through G3 values: 

1 - z2 ~ ~; Wkk' Wk'k 
k t:- (E~- E)(E~,- E) (2?) 

.,3 "">1"" wkk'wk'k"wk"k 
+~ L..J~L..J I f 1 

k k" k" (Ek- E)(Ek,- E)(Ek"- E) 

k k' 
r 

r + ... =0 

II (E'. -E) 
kl 

i=l 

So long as r « G3, the number of terms in the 
sum appearing as a factor after ? is of order G 3r. 

As in the one-dimensional case, we can show 
that W u'} k'k > 0. To do this, w)( separate the 
operator W into a Hermitian part W' and a skew­

.A 
Hermitian part W" 

, , h2 ,:.l [ a2 ay lXlX a w- ~. '"{ --+----
- 2m IX~ j IX:X a;"' ac;rx d!;<X 

(28) 

(29) 

In summing random quantities, their squares ac­
cumulate. Therefore, since the terms in Eq. (29) 
are similar to those in Eq. (28), and some of them 
have the coefficient %, we can conclude that 

1 w~-;::[2 >I w~k' /2 , 
(30) 

which means that 

w:kk' wk'k = JW'kk·l2 -I w~"· (31) 

Consequently we can repeat here the whole argu­
ment used in reference I. If the energy E lies out­
side the hand of values E~. then, according to Eq. 
(18), each term in the sum for (/ in Eq. (27) is of 
order c- 3rl 2 • For odd powers of t:, all these sums 
are variable in sign, and the root mean square value 
of the sumincludingthe factort: 7 is of ordert: 7 (r>2); which 
means that these sums can he neglected. On the 
other hand, the sums for even values of i have a 
number of terms of order G 37 and are fixed in sign; 
so these sums form a series of the type I- t: 2G 3 

-t:4G6 - ••• This means that Eq. (27) cannot 
he satisfied for a value of E lying outside the zone 

E~. 
Thus during melting of the crystal, the zone 

structure of the energy levels is retained, except 
that each level is shifted by an amount t: 2w: kn k. 

The wave functions in zeroth approximation are 
linear combinations of all G 3 Bloch functions 
belonging to the given zone. However,it was 
shown in reference 1, on the basis of Eq. (25), that 
in each solution only a fraction t: 2 of all the func­
tions have coefficients significantly different from 
zero. This estimate remains valid here. Conse­
quently each wave function in zeroth approximation 
represents a packet of approximately t: 2 G 3 Bloch 
functions, all corresponding to energy values E ~ 
close to E, hut with various values of the coef­

ficients k"". However, as we pointed out earlier, 

the perturbation matrix element W kk' decreases 

with increase in the difference k"" - k;; thus in each 

wave packet, functions grouped around particular 
values of k 1 , k 2 , k 3 will predominate. Because of 
this the electrons in the liquid are not described by 
standing waves, hut rather by wave packets moving 
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in definite directions, i.e., the medium is a con­
ductor. 

The uncertainty in the momentum component in the 
direction of the resultant motion of the packet is of 
order 

{32) 

if we note that the packet is built up from £ 2 G 
neighboring values of this momentum component; 
from the uncertainty relations it then follows that 
the packet is localized within a region of dimension 

(33) 

i.e., precisely the same interval within which the 
long range order shows a noticeable breakdown. 

We could carry the calculation to the next ap­
proximation and take account of the interaction be­
tween zones, but nothing new would be gotten 
compared to the one-dimensional theory [formulas 
I - (32) - (34) ]. 

In conclusion I take the opportunity to express 
my sincere thanks to A. I. Ansel'm and I. M. 

Shmushkevich for discussion of the work. 

Translated by M. Hamermesh 
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