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A theoretical justification of an empirical law by Simon for pressure along the melting 
curve of ordinary materials is given. Theory is compared with experimental results. 

l. INTRODUCTION 

T HE most significant and physically interesting 
problem of the theory of the stability of the li­

quid state is the study of the loss of stability of a 
liquid due to its crystallization. This is the pro­
blem of the "theory of crystallization" or the 
"theory of melting". For simple systems like 
argon the empirical relation of Simon gives the 
equation of the melting curve in the p- T plane as 
follows 1: 

P.. 1 ( T) = - A + B Tm, 
met 

(1) 

which is correct with sufficient accuracy in a very 
broad range of temperatures and pressures. Here 
A, B, and m are constants. For argon, for example, 

(2) 

B = 2. 73 kg/cM2 (degree )m; m = 1.288. 

The recent experimental results verified the correct­
ness of Simon's relation2,3. 

The major task of the "theory of crystallization" 
should be the theoretical derivation of Eq. (1). 
Domb4 has given a physical intetpretation of Eq. 
(l) in terms of the known melting theory 5,6 , which 
considers melting as an order-disorder tran~ition of 
binary alloy of atoms and vacant cells. Since the 
physical foundations of this latter theory are 
'doubtful, Eq. (l) still remains theoretically unex­
plained. 

In the present work it will be shown that the 
problem of the theoretical derivation of the empiri­
cal relation (l) can be solved using the theory of 

1 F. Simon, M. Ruhemann and A. Edwards, Z. Phys. 
Chem.B6, 331 (1930) 

2 P. Bridgman, Physics of High Pressure 
3 P. Bridgman, New Research in the Region of High 

Pressures 

4 C. Domb. Phil. Mag. 42, 1316(1951) 

5 J. Lennard-Janes and A. Devonshire, Proc. Roy. 
Soc. 169A, 317 (1939) 

6 J. Lennard-Janes and A. Devonshire, Proc. Roy. 
Soc. 170A, 469 (193CJ) 

the limit of stability of a homogeneous phase, 
developed in references 7,8. 

2. THE LIMIT OF STABILITY OF HOMOGENEOUS 
PHASE FOR THE INVERSE POWER 

LAW MODEL 

We consider a system of particles with intermolec­

ular potential of the form 

«<> (r) = 4s (a 0/rt (3) 

("inverse law model"). Here E is a constant with 
the dimensions of energy, a 0 is a constant of the 
dimension of length, and n is some number which 
we shall consider large. We shall introduce dimen­
sionless length using as a unit of length the quan­
tity a= a 0 (4E/kT)l/n so that 

Then 

r (kT)11n 
r~p=--

a0 4e: 

e-ti>(r)/kT = e-1tpn, 

and the parameter A of the general theory 7•8 is 
equal to 

_27w3 _ 2rra~(~\a{n 
/,- v - v \kT) 

(4) 

(5) 

(6) 

Furthermore, the solution K ( ~) of the integral 
equation which determines the behavior of the radial 
function as g (p) approaches infinity, turns out to 
be ( cf. reference 7) 

00 

I((q = 1/2 ~ (e-1/Pn)' u (")(~2- "2) d't. (7) 
II; I 

If the number n is sufficiently large, then the 
function (e-1/Pn)' has a sharp maximum m the 
neighborhood of the point p = l and vanishes very 

7 I. Z. Fisher, J. Exper. Theoret. Phys. USSR 28, 
171 (1955); Soviet Phys. I. 154 (1955) 

8 I. Z. Fisher, J. Exper. Theoret. Phys. USSR 28,437 
(1955); Soviet Phys. 1, 273 (1955) 
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rapidly for all other p. Furthermore, the integral 
of this function from p = 0 to p = oo is equal to 
unity and the following relation holds 

(8) 

If n is finite, but sufficiently large, then in the 
first approximation we can substitute a o- function 
instead of (e-1/Pn )'in Eq. (7). Finally we obtain 

K(();::::; 1 j2 u(1)((2 -l), if (.<1, (9) 

K(();::::;O, if (>1. 

In this approximation the solution K ( 0 is 
identical with the solution K (z) of the problem of 
hard non-interacting spheres which was considered 
in detail in reference 8. We can write then 

(2/,u(1))1im= 34.81; (u(1))lim= 2,90 (10) 

(cf. reference 8). Using Eq. (6) we find then that 

1ta~ ( 4e:)3{n 
vlim( T);::::; 3 kT · (II) 

Furthermore, we have from the general theory the 
following relation for pressure 

co 

~~· = 1 + ~ ~ (e-I{Pn)' U (p) p3dp (12) 
0 

= 1 -+- ~ u(l), 

so that according to Eq. (10), (pv/kT)lim = 6.RO 
and, using Eq. (11), we obtain 

, 20_!t (kT)l+~{n 

Plim(7) :::::; 1tag Me:)3/ll (1:3) 

The Eqs. (ll) and (13) describe in an exhaustive 
manner the limit of stability of homogeneous phase 
for the inverse law model for large values of n. As 
n--+ oo , the derived equations become exact ex­
pressions for the problem of hard spheres, as 
should be expected. The result allows an elemen­
tary physical interpretation9 . The particles, ac­
cording to Eq. (3), possess a property of natural 
compressibility and their effective diameter, i.e., 
the smallest separation to which two particles can 
come, depends on the energy of the colliding 
particles. It is evident that we can write for the 
effective diameter 

<D (aeff) ~ kT, (14) 

9 I. Fisher Usp. Fiz. Nauk 51, 71 (l953) 

so that Eq. (3) yields 

lleff ~a0 (4sjkT)If"; (v0)eff ~- 7.'0 (4s;kT)3n. 05) 

Since for spheres of constant natural volume v 0 

we have, according to Eq. (8) v l' = 2v , so that 
we obtain from Eq. (15) 1m 0 

vlim(T) ~ 2 ( Vo) eff ~ 2vo ( 4s/ k T)311' (16) 

which is the previous result. An elementary proof 
of the relation (13) follows from this expression 
and the equation of melting curve of a system of 
hard spheres 8 p 1 = (3 4/v )kT. 

met · 0 

3. TRANSITION TO REAL SYSTEMS AND 
COMPARISON WITH EXPERIMENTAL 

DATA 

The model discussed so far differs from real 
systems mainly because it neglects intermolecular 
forces of attraction. These forces can be included 
by considering, instead of the potential (3), the 
potential usually employed. 

(17) 

where the term r- 6 has been added to the potential 
(3). However, a rigorous solution of the problem 
for such potential encounters serious mathematical 
difficulties. The problem can be solved approxi­
mately if we take into account in the main term of 
F~q. (17) only repulsive forces, and then introduce 
a correction for forces of attraction. This is 
entirely correct at high temperatures when the 
crystallization (and even more, the absolute loss 
of stability of the liquid) takes place at very high 
pressures, so that the density of the particles is 
very large. Under such conditions the repulsive 
force of particles strongly compressed by the ex­
ternal pressure are the most important, and the 
forces of attraction play only a secondary role. 

In this case the main member determining the 
pressure at the limit of stability of liquid appears 
to be Eq. (13). To this pressure it is necessary to 
add a correction which accounts for the attractive 
forces between particles. Such correction is, 
evidently, the "internal pressure" of a liquid which 
is opposite in sign, so that 

. 20.4 (kT)I+3 1n ( 1S) 
P (T) :::::; -1 p(ml) I + - . 

lim TW~ (1e:)3 1n 

The internal pressure turns out to be only slightly 
dependent on temperature at the very high densities 
which are present during crystallization and at 
the limit of stability of the liquid. As a first ap­
proximation we can consider this internal pressure 
to be a constant quantity, and then dimensional 
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considerations lead to Pint:" ( E/ a~). In such a way 
we finally obtain ~ 

e: 20.4 (k1)1+atn 
/1im(T) ~- T a~ + 1t'U~ (4e:)3jn ' (19) 

where yis some dimensionless coefficient of the 
order of unity. 

A direct comparison of the theory with experimen­
tal results is not possible because of the lack of 
quantitative data on the behavior of the curve of 
the limiting stability of supercooled liquids. How­
ever, it is possible to assume that the difference in 
behavior of this curve from the curve of equilibrium 
phase transition from liquid to crystal is not im­
portant for liquids similar to argon. Then a possibi­
lity appears to interpret the relations (ll) and (19) 
as referring to the crystallization curve, and 
compare them with the experimental data. It is 
well known that the potential (17) corresponds to 
the experimental results for compressed gases 
most accurately when n--10 -12. The investiga­
tion of the second virial coefficient results in the 
following values for a 0 and E for argon 10: 

a0 = 3.50·10-8 CM; s = 13.9·10-15. erg , (20) 

if n=10, 

a0 = 3,41·10-8 CM; s = 16.5·10-15 erg, 

if n = 12 

We shall use these data to verify the theory, as­
suming that Eq. (ll) and (19) apply to the melting 
curve. 

The data for pressure: It is immediately evident 
that the temperature dependence of P. 1 of the met 
theoretical expression (19) is the same as for the 
experimental law (1). The constant m in Eq. (1) 
lS 

m = 1 + ~ = { 1.30, 
n 1.25, 

if 

if 
n= 10, 
n= 12, 

(21) 

which agrees very welt' with the experimental data 
(2). For the coefficients A and B in Eq. (1) we 
have 

(.22) 

The substitution of the values (20) results in eva­
luation of the quantity y.-7 - 9 which is quite 
satisfactory. Finally the numerical evaluation of 
B results in 

10 P. Fowler and E. Guggenheim, Statistical Thermo­
dynamics 

B _ { 3.47 kgjcM2 (degree )1·30, 

- 4.54 kg/CM2 (degree)I.25, 

if 
if 

n = 10 {23) 
' 

n = 12. 

The agreement with the experimental data (2) ~ithin 
an order of magnitude is good, but the theoretical 
values are somewhat too high. This can he par­
tially explained by the fact tha_t ~~· (19), strictly 
speaking, applies only to the hm1hng pressure of 
the supercooled liquid which should he somewhat 
larger than the pressure of the equilibrium crystal­
lization. 

THE DATA FOR VOLUME: A comparison of the 
theoretical result (ll) with the experimental data 
for volume of liquid undergoing equilibrium crystal­

lization is given in Table 1. The second column of 
the table is computed from the data of reference 
11. The third and fourth columns are computed 

from Eq. (ll), using Eq. (20). 
In this manner we find that the theory describes 

well the general behavior of the change of the 
limiting volume of the liquid and leads to values 
of the correct order of magnitude for the limiting 
volume of the liquid. Numerically the volume 
computed from the theoretical expressions is some­
what too large. 

TABLE 1 

23 3 

(v )x tc23cM' 
(vlicflimxlO em 

Theoretical 
r•K li<i:melt 

I 
Experimental 

n=IO n=l2 

83.9 4.63 7 .20 6.41 
126.3 4.33 6.39 5.82 
162.0 4.20 5.94 5.49 
193.1 4.14 5.53 5.24 

THE DATA FOR (pv) : The experimental data 
for the melting curve result in a linear temperature 
dependence of the quantity [(p +A) v ]melt , where 
A is the internal pressure from Eq. (1): 

[(p +A) v]meh CT. (24) 

This relation is easily derived from the numerical 
data of reference (11). The theory results in the 
same conclusion. From Eqs. (ll) and (19) we find 

that theoretically the following relationship holds: 

(25) 

11 0. Rice, J. Chern. Phys. 7, 136 {19 39) 
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A comparison of the coefficients of T on the right 
hand side of Eqs. (23) and (24) shows that they 
are of the same order of magnitude. This fact 
should be evident from the data for p and v already 
discussed. 

4. DISCUSSION OF RESULTS 

The results of comparison of the theory with the 
experimental data show that the inverse law ~odel 
can be used as a first approximation to descnbe 
the properties of the melting curve or. re~lliquids. 
It was already pointed out at the begmmng of Part 
3 that the inverse law model is not appropiate at 
low temperatures and should become mor~ ac.curate 
with higher temperatures. This expectatw.n .1s 
verified by the data in Table l. The remmmng 

disagreement in numerical values of the volume 
v and v. can be partly explained in the 

melt hm 
following manner. A correction of the same origin 
as the correction for internal pressure in l1.im (T) 

should have been introduced in v1. (T ). It is 
liD 

physically evident that this correction would dimin-
ish the numerical values of v1. ( T) and so 

liD 

improve the agreement with experimental results. 
Another source of inaccuracy in the numerical 

evaluations of the theoretical results enters in 
a and E which is derived by us from the data for 

0 
only moderately compressed gases. Generally 
speaking, using such data for liquids is not correct 
since the collective interaction of particles causes 
the interaction potential of two particles in the 
liquid to be different from that of an isolated pair 
of particles. 

It can be concluded that the general theory of the 
limit of stability of a homogeneous phase developed 
in references 7,8 describes correctly the basic 
behavior of the melting curve (crystallization 
curve) of real systems. 

Translated by M. J. Stevenson 
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