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Data about multiple Coulomb scattering in foils of optical thickness 1 and 3 are given. 
The relative role of single and triple scattering for different angles of deflection is clarified. 
In the Appendix a model of Coulomb scattering through small angles is. considered. 

I N many nuclear experiments it is essential to 
take into account multiple scattering of charged 

particles traversing layers of material which are so 
thin that the entire number of collisions is compa­
rable with unity. The usual approximate theory of 
multiple scattering, in which it is assumed that the 
number of collisions is very large, is not applicable 

here, so that a more exact theory must be employed 1 • 2 

The distribution function for small angles, ob­
tained in this theory, was studied by Biberman3, 
but the results of his work cannot be extended to 
angles, which are large in comparison with the 
minimum diffraction angle of deflection (see below). 
Even if the thickness of the scattering foil con­
stitutes one mean free path for elastic scattering, a 
considerable number of particles undergo more than 
bne collision in traversing it. It is very easy to 
determine the fraction of such particles in the total 
scattering effect. With the help of the exact theory 
of multiple scattering it is also possible to deter­
mine the fraction of particles which, after having 
suffered multiple scattering, leave the material at 
a definite angle with the original direction of in­
cidence. 

The general formula for the distribution function 
of particles which have passed through some thick­
ness of material and have been deflected through 
a small angle, was given in references l and 2. 
This function can be written thus: 
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where N is the number of scattering atoms per 
square centimeter, I the Bessel function of zero 

0 
order and da' the differential cross section. 

For light elements it is necessary to substitute 
the differential cross section for Coulomb scat­
teringinto Eq. (l), taking into account the 
screening: 

d~ = 8n:Z2e4 Od6 . 
m2v• [02 + (hrr.j mv)2]2 ' (2) 

here Z is the atomic number, v the velocity of 
the particle, a the screening parameter. A poten­
tial field of the form V = (Ze/r) e-ar cor­
responds to Eq. (2). 

We introduce the optical thickness of the scat­
terer ( d being the geometrical thickness) 

-: _ 8"' NZ2 e1djn} cx.2 v2 (3) 

and the dimensionless screening parameter 

'I= 1tcx.j2mv. (4) 

Substituting Eqs. (2), (3) and (4) in the general 
formula Eq. (l) we obtain the formula for multiple 
coulomb scattering in light elements: 
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here K is the Macdonald function. For large op­
tical th\cknesses this function can be written in 

the form 
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since then the main contributions to the integral in 
Eq. {5) are given by values of ~much smaller 
than y-r-

Substitution of Eq. (6) in Eq. (5) yields a formula, 
valid for large r {of the order of several tens): 
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A similar expression was obtained iit reference 
l, where the scattering in heavy elements was in­
vestigated, and it turned out that {((}) is very 
reminiscent of the Gaussian distribution. Equation 
(5) was tabulated by Snyder and ScottS for 
T = 100 without transition to the asymptotic form 
(7). 

If T = l or 3, Eq. (7) is, of course, entirely in­
applicable. To find the distribution formula in this 
case it is necessary to integrate the Eq. (5) 
numerically . As was already mentioned, a cal­
culation off((}) for small r was carried out by 
Biberman. He replaced the elementary scattering law by 
a sum of Gaussian functions. Such a sum can give a good 
of Gaussian functions. Such a sum can give a good 
approximation to f( e) for the smallest deflection 
angles ( f3 "'2 v ), but it is known not to be ap­
plicable in the range e >> 2 v, because the mean 
square of the deflection angle, as calculated ac­
cording to Eq. (2), diverges logarithmically, where­
as it converges, if Gaussian functions are used in­
stead of Eq. (2). But as the characteristic peculi­
arity of the Coulomb scattering consists just in 
the fact that the mean square of the deflection angle 
diverges on the side of large angles, it followe that 
in order to investigate f( e) for as large e as pos­
sible, one must not use the Gaussian approximation. 

In the first place, we note that a direct numeri­
cal integration according to Eq. (5) is not feasi­
ble, because the integral converges very slowly 
at the upper limit. Therefore it is necessary to 
separate out of the integrand the part due to un­
scattered and singly scattered particles. The re­
maining distribution function has the form 
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The subscript > l indicates that only multiple 
scattering has been taken into account. It is easy 

5 H. S. Snyder and V. T. Scott, Phys. Rev. 76, 220 (1949) 

to verify that the third term in the bracket under the 
integral sign gives single scattering, because (see 
Watson4) 

In the case T = 3 it was also convenient to sepa­
rate out the double scattering, since the integral 
(8) does not converge sufficiently well for them. 
Th_e distribution of doubly scattered particles, 
wntten separately, has the form 

} 9 (&) = -r2e--c ~~ [ 2 (~ + 1) 
- 2r. (~4+ 4~2)2 (~4 + 4~2) '/, (9) 
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as it should be. 
We give the results of numerical computations 

for r = l and r = 3 (the calculations were carried 
out by T. N. Sh~talova): 

TABLE I 

Distribution function for particles which have 
traversed a foil of thickness of one mean free 

path (r = l) 

:_:~-r~~---o-J 0 a I 1 1.5 I 2 I 2.5 I I 1----:---'--· 
2:/>1 10 11;01(1.130,CUJ91 0.057 0.03420.0204. 

-1tft I 0.73fi I ! 0.184 ,0.0394 
____ I _, _______ ! _ _;____ __ 

3 I :u 4 4.5 5 
I 

rwJ36,0.00735 0.00515 o.r::1
o.oo: 

0.007351 0.00254 0.0011 

Here f > 1 ( (} ) denotes the distribution function 
of particles which have suffered more than one col-

4 T. Watson, Bessel Functions 
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lision, f 1 the distribution function of particles 
which have suffered one collision. It turns out 
that the number of the former and the number of the 
latter become comparable to {) = 2, and for larger 
angles the particles which have suffered multiple 
scattering prevail. 

The distribution given in Table l is normalized 
to unity: 
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Here e- 1 is the fraction of particles which have 
passed without a single scattering event. Actually 
Table l comprises 97.5% of all particles which 
have passed; the remaining particles are scattered 
through angles e larger than 5. 

TABLE II 

Distribution function for particles which have 
traversed a foil of thickness of three mean 

free paths ( r= 3) 

'l:r;f>l (&) 0.29:J 

~rr/1 (&) 0.2~18 

2rr/2(&) 0.14~! 

2. J 

u" 

0.268 

0.191 

1).133 

1.0 

0.20:J 

0. 746 

0.088 

1.5 

0.143 

0.028 
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n I s 
--7---------·-

0. 064;) (). 0~01 

0. 0118 0. 001CJ:i 

0.0162 0.030 

li.OU13 0.0023 

0 . 0002 0. 00007 

0.0075 0.0002'± 

This table comprises 92% of all particles which 
have passed. We note that now multiple scattering 
becomes larger than single scattering already for 
very small values of e. 

APPENDIX 

The distribution function for multiple Coulomb 
scattering can also be studied experimentally with 
the help of a simple optical model. 

Translated by Z. V. Chraplyvy 
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Consider an emulsion compounded of two trans­
parent media of very close refractive indices. We 
will assume that one of the substances constitutes 
the medium proper, into which the other has been in­
jected in the form of small spheres of equal radius 
R, distributed at random. This radius will be as­
sumed to be large in comparison with the wave 
length of the transmitted light, so that the laws of 
geometrical optics can be applied. Thus the scat­
tering under consideration is, in a certain sense, 
opposite to the Rayleigh scattering, where the wave 
length is large as compared with the dimensions of 
the obstacle. 

We will first determine the deflection of a light 
ray in an elementary scattering event. According to 
assumption, the relative refractive index v of the 
two media is a small number. We draw the polar 
axis from the center of the sphere in the direction 
of incidence of the ray. The polar angle of the 
point of incidence of the ray on the sphere will 
be called {3. Then, as is seen from an elementary 
construction, the deflection angle of the ray in the 
sphere is 

The angle e is regarded as small, since v « l, and 
the contribution from larger angles is insignificant. 
From this it is easy to obtain the differential scat­
tering cross section. According to general formu­
las of the classical scattering theory it is equal to* 

4v20d0 
d-:; = 2..-;R2 (4v2+ 02)'i .. 

This formula is quite similar to Eq. (2), with the 
designation v corresp~nding to the previous one, 
and 

R = 2Ze~ hC/.·V. 

The formula for d a can also be obtained from the 
diffraction theory by a transition to the limit. 

* We notice that Eq. (2) is obtained in the Born ap­
proximation from the wave equation, and the present 
formula in the approximation of geometrical optics. The 
wave aspect for particles appears to be analogous to the 
ray aspect for light. Consequently the analogy found 
here is by no means a special case of the optical­
mechanical analogy. We were unable to find out the 
physical reason for this analogy. 


