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The amount of entropy in a volume which contains a random number of particles is found 
on the basis of entropy and indeterminacy considerations. 

T HE entropy of a system consisting of a fixed 
number of particles N (neglecting internal de

grees of freedom) is defined by the well-known 
formula* 

S = - ~ PN In PNd Q + const, (1) 

where p N is the probability density for a point re
presenting the state of the system in the 6 N -dimen
sional phase space n, However, to the best of my 
knowledge, the problem of finding the entropy in a 
volume V which is a part of the whole space ac
cessible to the particles has not yet been solved. 
A formula like (l) cannot be applied in this case, 
since the number n of particles in the volume V is 
itself indeterminate (random). If we set n equal to 
its mathematical expectation n we can evaluate an 
entropy S' in the volume V by a formula analogous 
to (l). H~wever, S ~will not be the entropy of the 
original system, but the entropy of the volume V 
for some other system, namely a system in which 
the volume V is surrounded by an impenetrable 
barrier. To determine correctly the entropy in a 
volume V of the original system, we need a new 
formulation, suggested by regarding the entropy as 
a random quantity. 

The subject of the present paper can be ap
proached in another way. The use of a probability 
density in a 6N-dimensional space is justified by a 
consideration of states in thermodynamic equili
brium, because then pN can be expressed directly 
by Gibbs' formula. The use of p N for non-equili
brium states appears purely formal, in view of the 
impossibility of expressing analytically how plY 
changes with time. The solution of a differential 
equation with a number of independent variables 
of the order of Avogadro's number is obviously not 
feasible. To be in a position to carry out calcula
tions (which are perharps tedious, but possible) of 
non-equilibrium processes, we must return to a con
sideration of distribution functions. The latter are 

* We shall write the entropy in dimensionless units, 
omitting Boltzmann's constant. 

used, in particular, by Bogoliubov1. It is most 
convenient to deal with distribution functions which 
characterize local statistical properties as, for 
example, the functions defined in reference 2. 
Instead of distribution functions, we can also use 
a system of correlation functions, which, in their 
turn, adequately describe the statistical system. 
The latter functions have the following advantages 
over distribution functions: In the absence of 
correlation between the particles, the distribution 
function becomes a product of lower order distribu
tion functions. In this case the correlation func
tions become zero. In ordinary physical systems 
the correlation function is different from zero only 
when its arguments are sufficiently near one 
another. The lower order distribution functions and 
correlation functions are the most important. If a 
certain accuracy is specified, we can neglect 
higher order correlations beginning with an order k, 
depending on the accuracy desired. However, 
neglecting higher correlations means that the 
higher order distribution functions factor into 
products of lower order distribution functions, 
since the higher the order correlations are set 
equal to zero. Of course, this considerably sim
plifies the problem. In the light of what has just 
been said, there is much more basis for terminat
ing a series made up of correlation functions than 
of distribution functions. One might say that the 
transition from distribution functions to correla
tion functions makes the series converge more 
rapidly. 

Thus, in treating non-equilibrium states it is ex
pedient to consider correlation functions (instead 
of p N ) and to find out how they change with time. 
Inasmuch as they completely describe the physical 
system, we can calculate, in terms of them, all the 
physical parameters of the system which interest 
us (density, fluctuations, energy, pressure, entropy, 
etc.). Accordingly, in view .of the application in 
statistical physics (of non-equilibrium processes) 

1 N. N. Bogoliubov, Problems of Dynamical Theory in 
Statistical Pliysics, Moscow, 1946 

2 P. I. Kuznetsov, R. L. Stratonovich, and V. I. 
Tikhonov, Zh. Tekh. Fiz. 24, 103 (1954) 
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of a new apparatus, viz. distribution functions and 
correlation functions, the question arises of how to 
express the entropy in terms of these functions. 
This question will be investigated in this paper. 

Following Shannon3 we shall understand entropy 
to be a measure of the indeterminacy {"neginforma
tion") contained in the given physical process, 
or, in other words, an index of the aii).ount of its 
statistical disorder. 

We define the entropy of a finite complete set of 
mutually exclusive events A1 , ••• ,~ by the formula 

n P (A;) 
S =- ~ P(A;) ln Q(Ai), 

1=1 

(2a) 

where P(Ai) is the probability of the event Ai and 
Q(Ai) is its "volume". 

The introduction of the "volumes" of events 
allows us to regard the entropy as a characteristic 
of an object which can be given a probabilistic 
description, i.e., as a characteristic of a statis
tical aggregate. For according to the usual formula 

n 

S =-~ P (A;) ln P (Ai) 
i=i 

{see reference 3), the entropy depends on which 
set of mutually exclusive events is chosen, and 
changes if another complete set of mutually ex
clusive events is used, even though the object it
self and its statistical characteristics have not 
changed. 

The size of the "volumes" of events is derived 
from the nature of the physical object considered. 
For example, if a true die is being considered, then 
the volume of the event consisting of the even 
throws is three times as large as the volume con
sisting of a throw of the number one. The reader 
will become acquainted with another example below, 
which is not so trivial. 

In the general case, including continuous·dis
tributions, the entropy is defined by the formula 

_ . ., P(A;) 
S-- hm . 1P(A;)In Q(A-). (2) 

Q (Ai )~ m111 i ' 

Here the summation is over mutually exclusive 
events, the sum of which is an event which is 
certain to occur; the passage to the limit corres
ponds to the maximally fine s11bdivision of events. 

If we apply Eq. {2) to a system of particles, the 
state of which is represented by the random point 
M in the phase space 0, we have 

3 The Theory of Transmission of Electrical Signals in 
the Presence of Noise, collection of translations under 
the editorship of N. A. Zheleznoff, Moscow, 1953 

(3) 

Here pN is the probability density function for the 

point Min n, qN is the density of "volume" in the 
space 0. Consequently, recalling the third law of 
thermodynamics and the indeterminacy principle of 
quantum mechanics, we can conclude {as shown in 
other work) that in a space of canonically conjugate 
variables 

S =- ~ pN 1n(h3N pN)dQ. (4) 

In the same way, the additive constant in Eq. {1) 
is determined by Planck's constant. 

We shall be interested in how the entropy changes 
if the number N is increased or decreased without 
changing the local statistical structure (i.e., with 
a proportional change in the volume V). For these 
considerations it is expedient to decompose the 
entropy {neginformation) into two components, con
figuration neginformation and exchange neginforma
tion. 

(5) 

The exchange neginformation S e corresponds to 
the indeterminacy entering the result because of the 
possibility of exchange between particles at all 
sets of N points at which particles may be located. 
Which distribution of the particles on the points 

{of theN! possible permutations) is actually real
ized is indeterminate. To each distribution we 
must ascribe a unique probability and a unique 
"volume". The probability of each distribution is 
1/N!. Designating the "volume" of each distribu
tion by Q1 , we have, according to Eq. (2), 

Se =InN!+ InQ1 • 

The exchange neginformation must vanish when 
there is only one particle. From this condition we 
find 

whence 

Corresponding to this fact, the configuration en
tropy is 

(6) 

Sc =- ~ PN In (N! h3N PN) dQ. (7) 

Let us consider the so-called Gibbs' paradox, 
consisting in the fact that if we divide a volume 
{albeit hypothetically) into several parts, the sum 
of the entropies of the separate volumes does not 
equal the entropy of the original volume. For 
example, if we divide the volume V into two 
volumes ~ = I{ /2, the entropy of\he original 
volume exceeds the sum of the entropies of the 
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suhvolumes by N 1 ln 2, i.e., 

S (V1)- 2S (V2) = (R I k) n1 ln 2, (8) 

where n1 is the number of gram-molecules of matter 
in the volume v;_ ; N1 = (R/k) n1 is the number of 
molecules in the same volume. 

The solution of this paradox is easily achieved, 
if we bear in mind that the entropy occurring in Eq. 
(8) is the sum of an exchange entropy and a con
figuration entropy. Indeed, using Eq. (6) and applying 
Stirling's formula, we have 

Se (V1) =In N 1 ! = N 1 (In N 1 - 1); 

Se(V2)=ln (~1 )!= ~;1 (ln ~1 -1), 
whence 

Consequently, for the configuration entropy, which 
describes the statistical structure without indivi
dualizing the particles,the Gibbs' paradox does not 
take place, and 

According to the quantum mechanical principles 
the indistinguishability of particles it is impos
sible to acquire knowledge of the individuality of 
the particles occupying the given positions (states). 
Therefore the indeterminacy of the distribution of 
the particles in different states is actually not a 
real indeterminacy. The real indeterminacy is the 
indeterminacy in the position (state) of the non
individualized particles,i.e, the configuration ne
ginformation. 

Thus the principle of indistinguishability of 
particles requires us to restrict our attention to 
configuration neginformation, which removes 
Gibbs' paradox .. In what follows we shall consider 
only configuration entropy, but omitting for simpli
city the index c. The configuration entropy is in 
its turn not completely additive, but this non
additivity, which enters because of statistical 
correlation, is of a completely different nature 
from the non-additivity of exchange entropy. 

Let us return to Eq. (7). We designate by B the 
event consisting of the Nth particle occupying the 
element dw 1 of the . six-dimensional canonical 
variable space, located near the point L 1, at the 
same time that the second particle lies in the 
element dw , the third in dw , etc. The probability 

2 3 
of the event B is 

Since Eqs. (2), (3) have universal validity, the 
event B has a configuration "volume" equal to 

(10) 

Here, as follows from a comparison of Eqs. (3) and 
(7) _ 1 h-3N 

qc -M (11) 

is the density of configuration "volume". 
Summing elementary events of the indicated type, 

we can calculate the configuration "volume" of the 
event consisting of just N particles lying in the 
region W _of the space w. It equals** 

Qw(N)= ~- · ··~ qcdw . .. dwN = ~~(:ajN(12) 
w w 1 

We note that the "volume" of the event consist
ing of any number of particles lying in the region W 
is given by the equation 

Qw = ~ Qw(N) = exp {WI h3}, (13) 
N=O 

whence it follows that when the geometric volumes 
are added, the abstract "volumes" of the corres
ponding events are multiplied. 

Let us pass from pN to a consideration of the 
functions eN ( L 1 , ... ,L N) (N = 1,2, ... ), which de

termine the probability 

dPN = eN(L 1 , ••• , LN)dw1 , ••• , dwN (14) 

of the event (we designate it by C) consisting of 
any arbitrary particle lying in the element dw , 
while at the same time any other particle lies \n the 
element dw2 , etc., given that, in all, just N parti
cles lie in W. It is easy to convince oneself that 
the indicated functions can be expressed in terms 
of the functions appearing in Eq. (9) in the follow
ing way: 

eN(L 1 , •.• , LN) = ~PN(LI7.1 , ••• , LIXN), (15) 

where the summation is over all possible (N!) per
mutations of the arguments of the function p N" When 
p N is symmetric, Eq. (15) becomes 

eN= N! PN· (15a) 

In an analogous fashion we find that the "volume" 
of the event C is 

dQN =h-aN dw1 , ••• , dwN. (16) 

Let us examine how we must sum events of the 
type C in order to obtain the event AN , consisting 
of just N particles lying in W. If we index the 
particles by the magnitude of any coordinate x (of 
the six coordinates designated by L ), then to obtain 

** The volume of a region is designated by the same 
letter as the region. 
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the event AN , we must sum events of the type C, 
subject to the .condition x1 < x 2 < ... < x N (in 
order to avoid duplication of elementary events). 
Accordingly 

Pw(N) 

= ~ . . . ~ eN (L 1, ••• , LN) dw1 • •• dwN . 
. ~,<: ... <,.rN 

If we remove the ordering in the coordinate x, then, 
because of the symmetry of the function e , we 
obtain a quantity N! larger. From this it "follows 
that 

Pw(N) (17) 

= :, ~· .. ~ eN(L 1 , ••• , LN)dw1 ••• dwN, 
w w 

The equations we have written are valid in the 
general case when the number of particles in the 
volume W is random. The events AN can be repre
sented as a sum of events of the type B or of the 
type C. In both cases we finally get unique mea,t
ings for the probability PW (N), the "volume" 
Qw (N), and the entropy. 

According to Eq. (2), to go from the preliminary 
formula for the entropy 

0 _ "" 1 Pw(N) 
,)w-- ..:::.J Pw(.i\) In Q (N) 

N W 

to the exact formula, we must pass to the limit in 
the elementary events (of type B or type C), i.e., 

\ dPN 
Sw=- ~jdPNlnttQ . 

N N 

Substituting Eqs. (9), (lO), (ll) or (14), (16), we 
obtain 

00 

Sw=-~ ~ ···~PN 
N=O W W 

or 
00 1. 

(18) 

Sw-=- ~ N! ~ ..• ~ eN (18') 
N'=O W W 

X 1n(h3NeN)dw1 ••• dwN. 

The expression just obtained reduces to Eq. (7) 
when the number N is determinate. In this case 
only one function pN or eN is different from zero. 

One is usually interested in the entropy included 
in a definite region (with volume V) of three-dimen
sional configuration space (which we designate by 
w*) with coordinates q ,q2 ,q3 • Corresponding 
to this, the region W wih have a projection V on 

the space w * and will extend to infinity in momen
tum space: 

- ~ < P1• P2• Pa <ex;. 
Let us consider the special case in which the 

distribution in momenta is statistically independent 
of the distribution in coordinates, so that 

(19) 

( N N N) • • • ·cp P1 , P2 , Pa , 

where cp(p ,p , p ) is the momentum distribu-
. f ). .2 3 • l * . f . tion unction tor one partie e; eN 1s a unctton 

having the same meaning as eN, only pertaining 
to the three-dimensional space w*. So that there 
may be a complete identity of formulas for the two 
functions, in particular, so that the probability 
that just N particles lie in V may be given by the 
equation 

P~(N) = ~! ~ ... ~ e;,dw: ... dw;,, = Pw (N), (20) 
v v 

analogous to Eq. (17), we must normalize cp(p 1 , ... , 

p ) to unity. 
3 

Substituting Eq. (19) in Eq. (18), and using Eq. 
(20) and the normalization condition, we obtain 

.Sw = Sq + NS1, (21) 

where N is the mean value of the number N; 

S1 = ~~~ 9 (pl, P2• P3) (22) 

X ln[h3ct(Pl• P2 , Pa)] dp1dp2dPa• 

Sq = - ~ ~~ ~ ... ~ e~ ln e;, dw~ .. . dw::V. (23) 
N=O V V 

The expression (23) has the same appearance as 
Eq. (18) (if we disregard an additive constant). We 
proceed to investigate it, omitting for simplicity 
the asterisk, and noting that analogous calcula
tions can be carried out immediately for Eq. (18). 

The functions eN are not local characteristics 
of the particle distribution, since they depend on 
the choice of the volume V. However, they can be 
expressed in terms of distribution functions or 
correlation functions, which express just such 
local statistical properties. Each distribution 
function f N( M1 , . .. ,MN) ( M is a point in the space 
w) is defined analogously to Eq. (14) with only 
this difference, that the condition that just N 
particles lie in V is abandoned. Following methods 
applied in reference 2, we can obtain 

- 00 (- w \ \ 
eN (MI> ... , MN)= ~ _s_!_ ~ ... . )fN+s {24) 

s=O v V 

X (1111> ... , MN+s) dCJ)Nt1 . .. dwN+ s· 
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Thus, knowing the distribution functions, which 
completely describe the statistics of the system 
of particles, we can calculate from Eqs. (23), (24) 
the entropy of any region V. As was shown in the 
introduction, instead of distribution functions it is 
more convenient to consider correlation functions 
g ( N = 1,2, .. ), defined by the equations 

N 

00 1 

= exp L~ liT ~gn(Mcx,' ... , Mcx/l)Zcx, ... zry/1}, 

where z"' are arbitr"ary numbers; f = l. From this, 
assigning the proper values to z"' ,0 we can obtain 

ro ] :! ]ek(Mcx,, ... , M"1)z"'• ... Zak (26) 
1<-~o "i 

Here 

the ek( M 1 , ... ,Mk) are expressed by Eq. (24). 
Equation (26) differs in form from (25) only by 

the presence of the term h0 in the exponent. 
Therefore, setting 

(28) 

we obtain for the functions ez and h k an equation 
completely analogous to Eq. (25). Such an equa
tion (which is encountered also in the theory of 
random functions and relates the moment functions 
with the correlations ) always gives the unique 
relations: 

e~ (M1) = h1 (M1); 

eg (Ml, M2) = h2 (Ml, M2) + h1 (Ml) h1 (M2); 

(29) 

where 

n times 
...---"---.. 

lz\n) = h;hi ... hi. 

By the symbol S is meant summation over all pos
sible permutations of the arguments (M) of the 
functions hi , which do not give identical results 
The number of such permutations is indicated 
below in brackets. (To calculate them it is neces
sary to consider the symmetry of the functions hi). 

If the correlation functions are known, then, by 
using Eqs. (27), (29) and substituting the latter in 
the expression 

"" 
S = - h0 - eh' ~ ~! (30) 

N=O 

X ~ ... ~ e~ In e~ d(J)1 ... d(J)N, 
v v 

which is a consequence of Eqs. (23), (28), we can 
calculate the entropy of a volume V. 

Let us pass to a consideration of the important 
special case in which there are correlations 
between the particles only for sufficiently small 
distances. If the distance between the points con
sidered is much larger than r, a certain correlation 
distance, then we can assume statistical inde
pendence for the occurence of particles at these 
points. Obviously, just such a state of affairs 
occurs in physical systems (e.g., in gases), where 
r is of the order of a radius of action of the inter
molecular forces. 

We shall make yet another assumption: we 
shall assume that our system is homogeneous. 
This assumption is less basic since, if it were not 
made, the formulas would be only slightly more 
complicated (provided the inhomogeneities change 
only slightly over distances r ). For the indicated 
system of particles, the 15n (M1 , ... M11 ) are ap-

preciably different from zero only when all the 
points M1 , •.. ,M11 are within distances of the order 

r of each other, i.e., when 

I M1 -- M;j <e: r (i = 2, ... , n). 

From this it follows that (if f5n vanishes s~ffi
ciently rapidly as I Mi - Mj I increases the in
tegral 

~ · .. ~ g n (Ml, ... , Mn) d(J)l ... d(J)n 
v v 

over a volume V, the linear dimensions of which 
are much larger than r, is approximately propor
tional to the volume V, i.e., 
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~ ... ~ g, (M1 , ••. , M,)dcu1 ... dcu, 
v v 

where 

(31) 

G, = ~ ... ~ g, (M17 M 2 , ..• , M,) dcu2 • •• dw" 
v v 

(The point M1 is fixed, hut lies inside V). 
At the same time, because of Eqs. (27), (31), we 

have 

~ ... ~ hn (Ml, ... , M,) dw1 • .• dw, = H, V. (32) 
v v 
Here 

- oo (- 1)s 
H,- ~ -.-s1-G,+s· (33) 

S=O 

Let us examine in turn the terms of the summa
tion with respect to N in the right hand side of Eq. 
(30). The term corresponding to N = 0 equals zero. 
The second term, which corresponds to N = l, is 
proportional to V: 

~ e~ Ine~ dcu = R1 V, 
v 

where, because of Eq. (29), 

(34) 

Consider the next term. According to Eq. (29) 
the following equations hold everywhere except 
in the hyper layer for which I M1 - M 2 I'Z r: 

eg(M1, M2) = h1(M1)h1(M2) = hi2>; 

In eg (M1, M2) = In h1 (M1) (35) 

+ In h1 (M2) = (2) In h1 ; 

e~ In e~ = (2) hi2> In h1 (I M 1 - Mzl-3> r). 

(Abbreviations like those used here will he used 
in what follows). Because of the failure of Eqs. 
(35) in the layer I M1 - M2 I ~ r, the integration of 

e~ ln e~ leads to the appearance of an additional 

term [as compared with the integral from Eq. (2) 

hi2 >ln h1] which is proportional to V. Therefore 

(36) 

where by R2 we designate the corresponding coef
ficient of proportionality. 

Let us consider the term corresponding to N = 3. 

If all three points M1 , M2 , A1a are far from one 
another (the number of isolated points n 1 = 3 ), 
then 

eo_ eo (a). 
3- I , 

e~ In e~ = (3) e~ <3> ln e~. 
(37) 

Accordingly, the integral from e~ 
tain a term equal to 

3h~R1 V3 • 

ln e 0 will con-3 

There are the following three hyperlayers: 1) points 
M 1 and M 2 are near each other and point M 3 is dis
tant from them; 2) M 1 and M 3 near, M2 distant; 3) 
M 2 and M 3 near, M 1 distant. These layers are 

characterized by a number of isolated points 
n 1 = l, and a number of pairs n 2 = l. For them 

£o =eo o. 
3 1 2' 

£~In e~ = e~c~ In e~ + e~e~ ln e~. (3S) 

In the indicated layers Eq. (38) exceeds (37) by an 
amount 

{39) 

= e~ [ e~ - e~ <2>] In e~ + e~ [ e~ In e~ - e~ (z) In e~ <zl]. 

But, by Eq. (29), 
0 0 (2) h . ez- e1 = z, 

so the excess 

e~ In e~ - e~ <z> In e~ <z> 

is just the excess which gave the increment R2 V 
in Eq. (36). Because of this fact and Eq. (32), we 
find that the integral from Eq. (39) equals 

(H2 V) (R1 V) + (h1 V) (Rz V). 

The expression just found must he multiplied by 
three, since there are three hyperlayers of the 
specified type. 

Finally, since Eq. (38) is not valid in the 
hyperlayer in which all three points are near one 
another ( n 1 = 0, n2 = 0, and the number of groups 
of three points, n3 = l ), we must introduce an ad
ditional term, proportional to V, with a coefficient 
which we designate by R 3 • In all, we have 

(40) 

= 3hiR1 V3 + 3H2R1 V2 + 3h1R2 V2 + Ra V. 

An analogous method can he applied to the exam
ination of the integral from e 0 ln e 0 (and higher 

4. 4. 
integrals). If the region in which all points are 
far from one another introduces a term 4ht R1 V 4. 

into the integral, then the layers corresponding to 
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points near one another bring contributions propor
tional to V 3 and V2 • These contributions, being 

of the same nature as the contributions R V, R ·v, 
can be expressed in terms of the latter. Finallf, 
there remains an additional term R J!, proportional 
to the first power of the volume_, wtich cannot be 
expressed in terms of R 1 ,R2 •Ra ,h 1 ,H'l.. ,H3 . 

Let us make a similar examination of the general 
integral of the indicated type, i.e., the integral from 
e£ ln ~ . We introduce a hyperlayer defined by a 
set of numbers n 1 ,n2 , .•. The latter have the same 
meaning as above (ni is the number of groups of i 
nearby points); therefore 'i.ini = k. For this layer 

eo _ eo (n,)eo (n,) eo<nk) 
k- 1 2 ... k 

1 o + ( ) o {n1 ) 0 (n,) l 0 . . . n e1 n2 et e2 . . . n e2 + ... 
On evaluating the integral, the following term 
corresponds to this layer: 

[ hn1-1Hn• R 
n11 2· .. 1 

+ n2h1' H~·-t . .. R2 + ... ] vn,+n,+ ... 

The number of such layers having the same structure 
(the same set of numbers n 1 , n 2 , ... ) equals 

k! 
I I (21)n• I (kl)nk • nl. n2. . ... nk. . 

Consequently, summing over the different layers, we 
have 

where H1 = h 1 . 

If we carry out the summation (41) over k = 0,1,2, 
... , then the restriction n 1 + 2n 2 + ... = k disap
pears. Writing 

v; = {n1, i =1= j; 
ni-1, i =j, 

we have, changing the order of summation 

~ ;! ~ ... ~ e~ ln e~ dCiJ1 ••• dCiJk ( 42) 
h=O 

~ 1 oo oo 1 (HiV)vi 
= V ~1 'i"" Ri II "" -v.l -i-1 ~]. ~ I'\ • 

j=i 1=1 Vj=O 

Substituting this expression in Eq. (30) and 
bearing in mind that the sum in the exponent 
vanishes, we find 

00 1 ; 00 (- w 
h0 + V ""'i"" Hi= V "" "" -.1- 1-0i+s = 0. ~ l. ~ ~ l.S. 

i=1 i==<l S=O 

Because of Eq. (27), (33), and the fact that 

~ r-W=_i_(l-l)i+s=O 
. ~ ds! (i+s)l ' &+s=r 

we obtain the result 
00 1 

S = - h0 - V ~ j! Ri 
i=1 

(43) 

00 1 . 
=- V ~ j! [Ri + (-lYOi] (01 = gl). 

i=1 

This formula, in deriving which, equalities of the 
type (32) were used, which contains errors of the 
order r/D, is valid for sufficiEmtly large regions V, 
when D » r. Thus, for large volumes, additivity of 
the entropy holds. If the dimensions of the region 
are comparable with the correlation distance, then 
additivity does not hold. Analogously, tb.e energy 
of a system of mutually interacting particles can 
be considered additive only for regions, the linear 
dimensions of which are quite large compared with 
the radius of action of the intermolecular forces, for, 
otherwise, the interaction energy between the re
gions will be significant. The non-additivity of the 
entropy derives from the presence of correlations 
between the particles in different regions. When 
the volumes are large (D » r ), then the correlation, 
which occurs mainly at the boundaries of the re
gions, is negligible compared with the general lack 
of correlation, and to the extent that correlation can 
be neglected, the entropy is additive and becomes 
proportional to the volume. The entropy density 
(which has meaning for sufficiently large volumes) 
is, according to Eq. (43) 

s 00 1 . 
S= v =- ~ j! [Ri + (- lYOil· (44) 

i=1 

The entropy is strictly additive only in the case 
of the Poisson distribution, corresponding to the 
absence of all correlations. In this case, if f3 is 
the particle density, 

0 1 = ~; 0 2 = 0 3 = ... = 0; 

R1 = ~ In ~; R2 = Ra = ... = 0; 

whence, because of Eq. (44) 

s=~(l-ln~). (45) 
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This formula can be obtained by other means, e.g., 
by using the expression (23). 

The Poisson law corresponds to a complete lack 
of correlation between the particles and is there
fore an extreme case. It gives the maximum entropy 
density for a given particle density g 1 . If the 
class of admissible distributions is restricted to 
those with the same energy density, then,of course, 
the Poisson distribution will not be the maximizing 
distribution. For non-Poisson distributions the 
most important correlations are those between 
pairs, described by the functions g ( M1 ,M ). As 
an example, we shall find the expr~ssion fo~ the 
entropy for the case where third-order and higher 
correlations vanish,i.e., g 3 = g 4 = ... = 0. In this 
case, according to Eq. (27) 

(46) 

where the point M1 is fixed. 
The method of calculating the quantities R 1 , 

R , R , ... follows from their definitions. From 
E~. (3CJ, we obtain 

R2 = ~ ~~ [g2ln (hi+ g2) 
vv 

Having fixed the point M , we can decrease the 
the number of integratiod"s needed to determine 
R2; 

R2 = ~ [ g2ln (hi+ Kz) 
w, 

(47) 

+ MIn ( 1 + ~!) J d(J)2 , 

1 

where g 2 = g2 ( M 1 ,M 2 ). Corresponding consider

ations for R3 lead to the integral 

where 

A h2 12 _j 23 _L 31, 
"'= 1 + g 2 ,- g 2 ; g 2 , 

(48) 

It is easily seen that the integrand vanishes if 
the condition that all three points be near each 
other be violated. Indeed, in this case, two of 

the distances I M1 - M2 I, I M2 - M31 , I M3 -A1 1 I be

come large (compared with r ), so that two of the quan
tities gl2 ,g23 ,g31 vanish, which leads to the 

2 2 2 
vanishing of the entire integrand and, consequently, 
to the convergence of the integral. Analogous be
havior occurs for R 4 ,R5 , ... 

The entropy density is equal to 

where the corresponding quantities are defined by 
Eqs. (46), (47), (48). In special cases there can 
be relations of smallness between g , g , and 
G , which can be used to simplify lalcul~tions 

2 
with the indicated formulas. 

The results of the present investigation can be 
extended to cases in which the particles (moleculeS) 
have internal degrees of freedom. 

Translated by R. Silverman 
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