
SOVIET PHYSICS-JETP VOLUME I, NUMBER I JULY, I955 

Dispersion Formulas of the Quantum Optics of Metals 
in the Many-electron Theory with Consideration 

of Electron Damping 

A V. SOKOLOV, V. l. CHEREP ANOV AND I. B. SHTEINBERG 
Institute for the Physics of Metals, Ural Affiliate of the Academy of Sciences, USSR 

(Submitted to JETP editor March I2, I954) 
J. Exper. Theoret. Phys. USSR 28, 330-334 (March, I955) 

The general dispersion formulas of the quantum optics. of meta_ls with consider~tion of 
electron damping liave been derived for the aggregate of mteractmg electrons whiCh can be 
described by the general wave function. 

I N reference (l) there were obtained some disper­
sion formulas of the quantum optics of metals 

based on the many-electron theory. However, they 
are correct in the visible and ultra-violet regions 
of the spectrum only when the damping of electron 
motion is not taken into account. It is of interest 
to consider the general case, which includes 
electron damping. 

In the general case the effect of the alternating 
field of a light wave on the electrons in a metal 
can be twofold. Correspondingly the quantum 
optics of metals differentiates between two types 
of processes - acceleration, and the transition 
of electrons into higher energy states. In the first 
case the electrons can lose the acquired accelera­
tion by virtue of their interaction with the elastic 
vibrations of the lattice (phonons); in the second 
case the electron system in general does not 
remain in the excited state, but 11 jumps back 11

, 

with the phonon-lattice interaction having an 
influence, among other causes, on the duration of 
the excited state. This interaction can be taken 
into account by introducing a damping factor of 
electron motion f'->-> -> = f' 1 • 

~~ ~2 ... ~Jv 
In considering the interaction of the electron 

system with the lattice vibrations, the principle of 
conservation of energy and the interference condi­
tion will assume the form: 

E(~, ... , ~:V) = E ~1 , ... , fN) + 1iw + 1iwq, (l) 

Lk~ = ~ki + K + q + 27tg, (2) 

where q is the wave vector and 1iwq is the energy 
of the phonon being absorbed or emmited. 

If it were possible to neglect the interaction of 
the electron system with the lattice vibrations, 

then the electron system would be in the excited 
state for a long time {stationary state). However, 
if the interaction is large, then the electron system, 
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being in an excited state, will give up its energy 
to the lattice vibrations (nonstationary states). 
During this process the energy of lattice vibrations 
will grow, and with time, become uniformly distrib­
uted among all frequencies, i.e., there will finally 
result a rise in the lattice temperature. 

The effect of the lattice vibrations on the elec­
tron system can be expressed by a decrease in the 
duration of electron occurence in the excited 
state. Mathematically this is developed by replac­
ing the energy of the electron system in the 

• d (-ol -+I I ) b h l excite state ~I•· ... , ~N• s y t e comp ex 
quantity 

E (~~ , ~; , ... , ~:V. s') --7 E (~~ ~~ , ... , ~:V. s') 

where f' -~ --. 1 is the damping factor of 
~I, ..... , ~N 

electron motion. To derive dispersion formulas 
which take into consideration the interaction of the 
electron system with the lattice vibrations it is 
necessary, therefore, to make the aforementioned 
substitution; the formulas (2.6), 1 expressing the 
law of conservation of energy and the interference 
condition, are to be replaced by formulas (l) and 
(2) of this paper. However, in as much as the wave 
vectors of the photon and the phonon can be ne­
glected in comparison with the generalized vector 
of the entire electronic sy:;tem, the interference 
condition will have the same expression as in 
reference (1). As in the one-electron theory, the 
lattice quantum energy can be neglected in compar­
ison with the energy of the entire electron system, 

and therefore, instead of equation (l) we shall have 
the previous form of the law of conservation of 
energy (2.6) I. In taking into account the above 

1 A. V. Sokolov, J. Exper. Theoret. Phys. USSR 25, 
34I (1953) 
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considerations , the expression for the current dens­
ity (3.17) in reference (1) takes the form: 

• e2 

J = m2 en (Oa)3N 

X ~ ~d11 ••• d1N (p0 (~I>· .. , Sv. s') 
s, s' 

~ ~ 

-Po (~r. ... , ~N. s)] 

{B irut 1 - [ exp- ( w' + w- if') t] 
X e <u' - w - i 1" 

+B* -irut1- exp [- i(w'- w- if') t]} 
e w'- w-ir' 

~ ~-
X (~I• · ·., ~N,S I ~P1 I ~r. ... , ~N, s') 

-x e-r·t d ~r. ... , d ~N. 

where w'=(!)- - _, _, 
~ •• · · ·• ~N• s; ~1' ... , '?.N, s' 

This expression has a simple physical meaning. 
Immediately after the application of the field at 
t~ this expression gives the displacement 
current, specified by the original distribution of 

(3) 

the electrons.among the states Po(~, ~~ , ... , (N' S)* 
Mterwards w1th t > 0, there appear two ~_ore types 
of terms as a result of the redistribution of elec­
trons among the states by the action of the field: 
those harmonically dependent on t with the 
frequency w of the external electro magnetic field 
and terms containing function of t with frequencies 
w' and damping out with time. The first refer to 
the forced vibrations of the system, while the 
second describe its natural oscillations, set up at 
the starting time of field application and damped 
out exponentially with time. The current, deter­
mined by the initial electron distribution is also 
damped out with time. With strong damping, as in 
the case of large t one can completely neglect the 
natural vibrations of the system and the initial 
current. However, when damping is absent (r'=O), 
or when it is weak (r~O), the natural oscillations 
of the system must also be taken into account. 

For the convenience of subsequent calculations, 
Eq. (3) may be rearranged as 

(4) 

where 

(4a) 

- -
[Po (~I> · .. , ~N, s') 

- ~ 

-po(F.I•···· ~N, s)] 

-~N, s) 

X {B /rut 1 + B* - irut 1 l 
e ' + ·r' e ' ·r'i ()) W-l ()) -.())-! 

(f - ~- -
x ·1· · · ·• ~N, s i ~Pi I ~1. • .• , 1N,s') 

(4b) 

X {B irutexp[-i(w'+w-ir')t] 
e - i ( w' + ru - ir') 

+ B* -/rut exp [- i (w'- w- i r') t] } 
e - i ( w' - ()) - i r') 

In (4a) the sum over s, s' js brok~n u~ into two 
parts, CO.!:fespo!!_ding to Po(~l , ... , ,;N, S ) 

and P0 ( ~l , ... , ~ ,s) and in the first of them the 
summation indic:s s ~s' are interchanged so 
that 

(!).... - - - ~ - w- -
!;,,. .. , '<.N• s; ~ ••..• , I;N, s' ~" .. ., 'f.N• s; (5) 

it,., ... , ~. s' and 
r _ _, --7 r _, -, . 

!;,, ... , 'f.N f,l'"'' ~N 

Collecting again all the terms into a single sum, 
instead of the expression in the braces of (4a), we 
shall have 



DISPERSION FORMULAS OF QUANTUM OPTICS 233 

{B e iwt 1 + B* e-iwt 1 
I • I I • I -w+w-tr --w-w-tr. 

iwt 1 B* -iwt 1 } 
- B e w' + c.> - i 1" - e w'- w - i r' · 

Grouping in pairs the terms of this parenthesis, 
the first with the fourth, and the second with the 
third, and taking into account that 

B eiwt + B* e-iwt = A, 

B eiwt- B* e-iwt = (1/iw) A, 

the parenthesis in question can be represented by 

f [ w'-w w'+w J 
l- (w'- w)2 + f'2 + (w' + w)2 + r'2 A 

1[ r' r' ]'} + Zl (w'- w)2 + 1"2 - (w' + w)2 + f'2 A · 

Separating (4b) into two parts, and entering i3 into 
one, and i3* into the other, the following transfor­
mation can be made: 

exp [- i (w' + w- if') t] 
- i (t~' + (U- il'') 

exp [- i (w' + w) t] 1 = 15- r · t ----''-'--,.--;--;---:-'-------o-~ --:------;,----,-
-i(w'+t~) i+ ( I'' ) 

i(w'+w) 

=e-r't exp[-i(w'+w)t] 
- i (w' + w) 

f r' rr2 ) 
X 1, I -- i (w' +w)- (w' + w)2 -. · ' · 

(6) 

Before making the analogous transformation for the 
expression 

[ • ( r • I") t] / . ( r • I'') exp - t w - w - z - z w - w- r. 

in that part of Eq. (4b) which contains B*, the in­
dices s ? s ' are interchanged and, taking into 
account (5), we obtain 

exp [- i (- w'- (U- i r') t] 
- i (- w'- w- i l") 

(7) 

__ 1,. 1 exp[-i(-w'-w)t] 11 
- e -i (- w'- w) 1 +[I'' !i (-w'- w)] 

= e-r·t exp [- i(-w'- w)] t 
- i (- w'- w) 

r r' f'2 ) 
xll+.('' )-('+ r···. \ lw--rw w w· 

Making then a transition in the expression (4b) 

from the integration variables li (;:1 ?] 1s 1) .... 

(N(;:N 1] NsN.) to variables w', u 1, ... , u3N_ 1 in a 
manner analogous to that of reference I, and 
neglecting in (6) and (7) the termS in r 1 /(UJ I+ W), 
i.e., considering the damping small*, we obtain in 
place of (4b) the following expression: 

X (f -; r j "' ' 1 ;: 11 ) 
·1> • • ., ~N, S .L.JPi I'I> ... , .N, S 

s'). 

· The final expression for the total current density 
in the metal will have the form: 

j =- e2 3N~~df1, .. . , d1N,Po 
me (Oa) 8 

x (fi> ... , 1N, s) X {A e-r·t 

} 
e2 

x D- - s -' _, s' A - 2 . 3N 
!;,, ... , 'f.N, !;, .... , !;N, m ch c.> (Oa) 

x ~ ~ d f1 , ... , d1N, p0 (~, ... , ~N, s) 
s,s' 

x ~ ~ du1 ... du3N-1 e-r.t 
s,s' 

'}(. Po(~I>· .. , ~N• s')-Po(~lo ... , ~N' s) 
grad_ _ cu' 

~~, ... , ~N 

* This case is of particular interest to us since we 
wish to prove that with r~ 0 our final formulas for € 

and o-become the formulas of reference (l). In the pre­

sence of strong damping the entire exp~sripn (4b) 

vanishes because of the presence of e t 
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A comparison of this expression with the current 
calculated from classical theory 

• e:-1w2 a· 
J=- --A--A 

47t' c c ' 

gives the following exJI'essions for the dielectric 
constant f and the electrical conductivity a 

e= 

x ~I [ -I"t 1 "\., ( w'- w 
~ ~ e + mn ~ (w'-w)2+f'2 

w' + w ) ] + , 2 '2 D... .... s ... ' -· s; 
(w +w) +f ~ •.... , f.N, 1;;1 , ... I;;N, 

cr= 
m21iw (Ga)sN 

X ~~e-r't Po(~, ... , ~N,S')- Po(~l•· .. , ~N• s) 

s,s' grad... _ w' 
!;, ... I;;N 

e2 
" 1 ( I'' r' ) + m2'hw (Ga)sN f:;) (w'+w)2+1''2 - (w' -w)2+f'2 

x Po(~I> .. . ,eN, s)D- - -· -· d~, . .. , d1N. 
I;,, ... ,I;;N; 1;1, f.N 

As we expected, with r' = 0 the expressions for 
f and a become Eqs. (3.23) and (3.24) of refer­
ence l, whereas with r, =I 0, the terms containing 
exp (- r't) vanish and, finally, we obtain 

X D- - -, I dt d" r; ~ ~ ~1 .... , r;iv . .... ... N; ... 1 .... , I;;N, 

Translated by H. Kruglak 
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