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An expression is derived for the quantum corrections to the trajectory of a relativistic 
electron moving in an axially symmetric magnetic field. 

I N a series of papersl-3 on the theory of the 
radiating electron, it was shown that the elec

tromagnetic radiation emitted by an electron mov
ing in a magnetic field becomes extremely intense 
at high velocities. The radiative energy loss 
produces a significant contraction of the orbit 
radius. . 

A quantum mechanical treatment shows that m 
addition to the contraction of the orbit the radia

tion causes radial oscillations of the electron 
(radiation recoil effect) which leads to a broaden
ing of the trajectory. In our earlier papers 4 - 6 on 
the quantum theory of the radiating electron, we 
investigated these effects for an electron in a con
stant magnetic field ( H = const ). 

In the present paper we use the methods of our 
papers4-6 and generalize the results to the case of 
of an inhomogeneous magnetic field with axial 
symmetry, assuming the field in the neighborhood 
of the stable orbit to be given by 

vector potential A in the form 

Ax= - yH0/rq (2- q), (2)* 

Ay = xH0 jrq (2- q), Az = 0. 

Neglecting quantities of order 1i 2 , we need not 
consider spin effects, i.e., we may use the scalar 
relativistic wave equation 

{£2 + c2fL2'V2 _ e2A2 .(3) 

2ecn ~ } 
- -i- (A 'V)- m2c4 iJ = 0, 

where E is the energy and m the rest mass of the 
electron. In what follows we investigate only the 
motion of the electron in the orbital plane, so that 
we look for solutions of Eq. (3) of the form 

/ mc2 1 V y-,:u(r). (4) 

(1) The radial function u is normalized to unity, 

Our old results will be obtained by putting q = 0. 
It is convenient to take the components of the 
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= 

~ u2 (r) dr = I. (S) 
0 

The azimuthal quantum number l takes large 
integer values ( l » l) in all cases of interest 

The wave equation for the radial function is 

u" + f(r) u = 0, (6} 

* It is well known that the external currents which 
maintain the magnetic field must not lie near to the or
bital plane z = 0, i.e., the condition curl H = 0 must be 
fulfilled. This is achieved by letting the vector-poten
tial A depend on z: 

A =-- yHo (1 + q (2- q) z2) 
x rq(2-q) 2r2 , (2a) 

A = xHo (1 + q (2 - q) z2) A 0 
Y rq (2- q) 2r2 • z = · 

Then it is easy to see that 

curl H lz=O = 0. 

When z = O, Eq. (2a) reduces to Eq. (2). 
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with 

f(r) = 

T = eHo I en (2- q), u' = du I dr. 

We develop {(r) in a Taylor series in the neigh
borhood of its maximum given by 

(7) 

f' (a)= 0. .(8) 

The last equation fixes the value of the radius of 
the stable orbit 

a = [ 1 ]I/(2-q) 
y(1-q) (9) 

In deriving Eq. (9) we neglected the ~in Eq. (7) in 
comparison with [2. 

Keeping only terms to the order of x2= (r- a)2 
in the Taylor series, the function u satisfies 

u" + (ct- ),2x 2) u = 0, (IO) 

wh-ere 
£2-m2c4 ( l 

ct=J(a)= c2h2 -T2(2-q)2a21-q, (11) 

J..2=- ~f"(a)=l2(2-q)2(1-q)a-2q. 
With good accuracy we may assume that x varies 
between the limits - oo and + oo, so that Eq. (10) is 
identical with the equation of motion of a harmonic 
oscillator. The frequency U of radial oscillations 
of the electron about the stationary orbit is given 
by 

where J1 = E / c 2 is the relativistic mass of the 
electron. From Eqs. (11) and (12) we find 

il=(vfa)V1-q 

(12) 

(13) 

in agreement with the known result 7 obtained 
from classical theory. 

2. From Eq. (9) it is easy to show that, in the 
absence of radiation, the radius a will remain 
constant (independent of the value of the magnetic 
field) only when Wideroe's condition is satisfied. 
In fact, by the adiabatic principle of Ehrenfest, the 
quantum number (l - l ) must remain constant 

0 
when the magnetic field increases slowly with 
time. From Eq. (9) we find 

d(l-10) d ea2 [ 1 - ] 
=(lt=dtCh H(a)-2H(a)' (14) 

7 
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where H (a) and i[(a) are respectively the magnetic 
field and its mean value over the stable orbit, 

a 

a2H (a)= 2 ~ H (r) rdr + ?~n~, (15) 
0 

and the constant term depnds on the law of varia
tion of the magnetic field away from the region of 
the stationary orbit. From Eq. (14) it follows that 
the radius a can remain c~nstant while H0 is 
varied, only if H (a) = ~- H (a). 

3. From the wave equation (IO) we find the 
eigenvalues of the energy and the eigenfunctions 
describing radial oscillations [see also reference 
4, Eq. (45)]: 

~ = 2s + 1, (16) 

E=ch (<2-q) :q[2t+a2-q qy 

+ (2s + 1)(1 -q J + m2c2-n-r 

Us= .. 4/). 1 e-<'-f2)(r-a)'Hs(Yf(r-a)).(17) 
Jl 1tV2ssl 

Here H5 is a Chebyshev-Hermite polynomial, and 
s = 0, 1, 2,--- is the radial quantum number. 

Using the wave-functions (17), it is easy to find 
the mean-square fluctuation of the radius which 
defines the breadth of the trajectory: 

r.o co 

~2 = x 2 = ~ x2u~dr:::::; ~ x2u ;dx = s/21', (18) 
0 -co 

where 

11 = eH (a) V 1 _ 
2ch q. 

F~r a constant magnetic field (q = 0), the value of 
~ reduces to the expression ~ 2 = s/2 y found by 
us previous! y6. 

4. We shall determine the angular frequency 
wvv', and theprobability uyy'of the radiation as

sociated with a transition of the electron from the 
state l,s to the state l: s ', ( v = l-l ', v' = s- s '), 
keeping terms only up to the order v 2 / l. 
These are 

<Vv,v' = <V0 (v .J_ v' Vl- q), (.19) 

W',, v' 1 2 3}''3 
Wv,v' = ~h-- =-,.-Is, s' (x)-- (20) 

VW0 nvw0 47t 

X~-:~ (m~2 rydy ~ K·t. (z) dz. 
y 

Here Wvv, is the radiation intensity, 
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_ 2 ( mc2 )3 
Y-;rv -y-' (21) 

1 
X = ------,===- -, ' 

2(2-q)V1-q 

v 
Cuo =a' 

and the function l ,(x) is connected with the ss , 
Laguerre polynomial Q'J, (x) by 

.xv'/2e-x/2 , 
fs,s•(x) = (- lY Jf" Q~·(x). 

s! s'! 
(22) 

It is easy to see that the intensity (20) differs 
from the corresponding classical expression {in 
this approximation) only by the factor I ;s, which 
as we repeatedly showed (for example in reference 
6) reduces to unity when summed over all final 
states s '. In this approximation therefore 

W., = ~ Wv,v' = Wc!ass 
v' 

(23) 

5. We shall use the quantum expressions to de
termine the change in orbit radius produced by the 
radiation. In a single transition the quantum num
ber l changes by an amount /11 1 = l '- l =-v. 

Multiplying this by wvv' dt and summing over all 
possible transitions, we obtain the change dl occur
ring in an interval of time dt: 

2 e2 ( E )4 1 dl =- \lvwv v•dt = -..-- - -dt. 
~ ' 3r m~ ~ 
v,v' 

(24) 

Hence, using the equation 

e{H~,t)_H(r,t)} (25) 

eM iJaH(a, t) t!..riJE 
= -a da = - a iJa 

{see reference 3) where 11 r = r- a, and also using 
Eqs. (14) and {15), we find the well-known clas
sical result for the radiative contraction of the 
orbit radius {see page 260 of refernce 3), 

(26) 

with 
y 

() 1 ~··4d 
pl Y = siny ~ Stn Z Z (27) 

0 

3{y 2. 2 I = - -. - -cosy - ;-· Stn y cosy I . 8 stny 3 

In deriving Eq. (26) we assume that the magnetic 
field lf is increasing slowly with time, 

H = B sin dt, E = £ 0 sin u:/t, 

c,/ ~-~o = v /a, 

so that the field remains practically constant 
during the period of one revolution of the electron. 

6. We proved6 in the case of a constant mag
netic field (q = 0) that the quantum corrections to 
the intensity of radiation and to the contraction of 
the orbit are of order (E/mc2)2 (1!/mca) relative 
to the classical values. Therefore the quantum 
corrections become an appreciable fraction of the 
whole effect only !}tan energy comparable with 
E y, = mc2(mca/1i) ~( Considering quantum correc-

tions in general, the most interesting effect to in
vestigate is the broadening of the trajectory (fluc
tuation of the orbit radius} which is characterized 
by the radial quantum number s. 

As we see from Eq. {18), the quantity s remains 
unchanged as the magnetic field lf (a} is increased 
adiabatically. Therefore the mean-square breadth 

of the trajectory (2 must decrease7 inversely to 
H (a}, since, by Eq. (18), 

~2H(a) =schje'}IT=q= const. 

However, as we showed in the case of a cons
tant field, at an energy of the order of E 115= mc 2 

(mca/"'i) 1 I ~ure quantum transitions involving a 
change in the radial quantum number s begin to 
occur. These transitions, in contrast to the clas
sical theory, mus~oduce an increase in the tra-
jectory breadth ,j ( 2 • The quantum broadening of 
the trajectory begins to outweigh the classical de
crease in breadth at a comparatively low energy 
E = aE 115with a about 3. This broadening of the 
trajectory is an increase in the amplitude of r&dial 
oscillations, arising from the recoil when photons 
are emitted. 

The formula for the increase in ( 2 were derived 
by us6 for the case of a constant magnetic field. 
Here we generalize the results to the case of an 
axially symmetric field varying adiabatically with 
time. 

By Eqs. (18) and (22) we have 

ds =- ~v'wv,v' dt (28) 
v,v' 

55 e2 ( E )6 dt 
= 48V3 mcr2 mc2 (1- q) '/,' 

where v' = s- s '. In addition we had to take into 
account the expression for the change 11( 2 pro
duced by the emission of a single photon with 
energy 11E, 

1 2 2a2 (!:l£)2 
L\~2 = 2y' L (s'- s) ls,s·(x)= (2 -Zq)2 E • (29) 

s' 
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which will evidently remain valid in the presence 
of forces acting on the electron parallel to its tra
jectory, or in the presence of other transient forces. 
Hence we find the law of variation of the breadth 
of the trajectory 

55 e2ttr 
+ 48V3 m (1- q)2E (t) 

t 

r (e <t>)s !___ dt 
~ mc2 r2 ' 
0 

(30) 

where c {3 0 , E 0 and a represent the initial values 
of velocity, energy and radius. The last equation 
gives for q = 0 the variation of ~2 in a constant 
magnetic field, agreeing with our earlier result 6 • 

In particular, if the energy increases like 
E = E0 sin w 't, the quantum broadening becomes 

~ 2 =~ _1_~_'h_ ( E~ ) 5 __!__p (w't) (31) 
qv 48V3 (1 - q)2 me mea mc2 w' 2 • 

y 

1 ~ F2(Y)=-.- sin6 zdz 
SillY 

with (32) 

0 

1 { 5 15 . 2 + 3 . 4 1 . 6 } 
= siny 16 y- 64 Slll y fi4Slll y -192 Slll y . 

The maximum value ofF 2 occurs when w't = TT/2 
and is equal to FMAX = F 2 (TT/2) = (5/32)TT. From 
Eq. (30) we see th!t the first term, which comes 
from the classical theory, gives a mean-square 
breadth of trajectory decreasing inversely with 
energy; the second term, which is obtained only 
from a quantum treatment, gives a mean-square 

breadth increasing proportional to E 5 • 

Note added in proof. In a recently published paper 
[Phys. Rev. 97, 470 (19ffi)], Sands investigated the ef
fect of quantum fluctuations on the phase-oscillations 
of a synchroton. We considered, in our series of papers 
on the quantum theory of the radiating electron (see for 
example reference 6), a similar mechanism for the quan
tum excitation of macroscopic radial oscillations. 

Sands' final result(Eq. (23)] can be derived from our Eq. 

(18) [Doklady Akad. Nauk SSSR 97, 823 (1954)] or from 
Eq. (30) of this paper, if one restricts the action of the 
beatron oscillations, which produce the main part of the 
total effect, and which are correctly described by our 
theory, to operate only for a time equal to the decay
time of the synchroton oscillations. This decay-time is 
shorter than the acceleration time of the electrons. 

Translated by F. J. Dyson 
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