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the problem of investigation of these phenomena in 
a strong electric field appears to us one thought up 
especially for this occasion. In order to heat up the 
electron gas under conditions when primary current 
is absent, the author had to introduce artificially 
a strong electric field perpendicular to the primary 
temperature gradient (in the presence of a magnetic 

field in the direction of the latter). This immedi­
ately leads to a contradiction in the calculation of 
the electronic component of thermoconductivity, for 
instance. The calculation was carried out, as usua~ 
with the assumption of absence of electric current 
in the specimen ( j = 0 ). While doing this, however, 
the author did not account for the fact that a strong 
current is required in the semi-conductor in order 
to heat the electron gas. 

Furthermore, in all formulas obtained, there 
enters a quantity Xv• which is dependent upon 
the electric and magnetic fields E and H, and, in 
the presence of a temperature gradient, also upon 
the coordinates r. Nevertheless, the calculations of 

xll is carried out under the assumption that the 
symmetrical part of the distribution function {0 

does not depend on the magnetic field or on the 
coordinates, and the solution of Davydov is used 
for this case. We do not agree with Avak'iants, who 
states that "there is no necessity" for solving 
the equations of Davydov in the case in which { 0 
depends on E, H and r. From the formulas of 
Davydov 3 it follows that for not very small mag­
netic fields (or small H at sufficiently low temper­
atures) the dependence of {0 upon H cannot be 

neglected. 
In calculating {0 , Avak'iants also neglects a 

term which accounts for the entrance of electrons 
into the zone of conductivity (or to local levels). 
This is justified only in those cases in which the 
concentration of electrons (holes) differs but 
little from the equilibrium condition. But, in a 
kinetic equation, under conditions where the semi­
conductor is inastrongelectric field, not only the 
usual thermal ionization, but also the ionization by 

the field must be accounted for. Neglect of the 
terms expressing the ionization by the field, is, in 

our opinion, one of the basic causes of the disa­
greement between theory and experiment. 

Thus, the papers of Avak'iants cannot interpret 
experimental results (for instance, the Pool* ef­
fect) and do not contribute, as it appears to us, 

anything new to the problem of behavior of semi­
conductors in strong electric fields. 

Translated by M. G. Jacobson 
39 

* Translator's note: Probably misprint; correct refer­
ence probably is to Suhl effect. 
lG. M. Avak'iants, J. Exper. Theoret. Phys. USSR 26, 
562' 668 (1954) 
2B. Y. Davydov, J. Exper. Theoret. Phys. USSR 6, 471 
(1936) 
3 B. Y. Davydov, J, Exper. Theoret. Phys. USSR 7, 1069 
(1937) 
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I . N papers by Blokhintsev 1 and B.lokhintsev and 
Orlov 2, it is shown that for nonlmear electro­

dynamics and mesodynamics, the propagation of a 
signal (defined as the surface of a weak dis­
continuity in the field strength) can take place 
with a velocity greater than the velocity of light 
in the vacuum*. Both papers are based on the 
method of characteristics of systems of partial dif­
ferential equations, going into detail in the case of 
plane waves. In view of the importance of this 
question, it is interesting to investigate it further 
and to simplify the method. 

Sommerfeld 4 has investigated the velocity of the 
signal and of the wave front (the group and phase 

velocities**) in Maxwell-Lorentz linear electro­
dynamics. He showed that, in linear electrodynam­
ics, the velocity of the front is always ( inde­
pendent of the medium) equal to the velocity of 
light in the vacuum***. This result is particularly 
easy to get by.,making use of a method pointed out 
by Levi.Civita. We shall apply the same method 
to nonlinear electrodynamics, since the equation 
for the velocity of the wave front can be derived 
simply and intuitively****· 

As is well known, the equations of electrody­
namics are gotten by the use of the variational 
principle from a Lagrangian depending on the first 
and second invariants of the field, that is, 

L = L(K, 12 ), 

where 

First let us investigate the use of a pl~ne wave. 
Let£= Ex(z, t), H = Hy(z, t), Ey = Ez = Hx =Hz= O. 
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Then the basic equations of the field take the form 

aK aK aH aE o· i1) 
aa;H+ a (fiE +az+ (it= ' ' 

(the trivial equations aEraz = 0 etc., are not writ­
ten down ). Above and in what follows we take the 
velocity of light c = l, 

(;2L(iJK2 iJ2LidKdl a2Lfaf2 
a ::: oL!dK ' (3 ::: auoK ' y ::: iJL!oK 

In the case now under consideration, f3 = y = 0. 
Let the plane z = v t be the surface of weak 

continuity of E,. and HY moving with velocity v. 
Denoting by¢ the change in the value of any 
quantity ¢'on going through the surface of dis­
continuity, we have 

[£] = o, (H] = o, [oE/Oz]::: e =!= 0, 

[aHtaz]::: h=j=O. 

( 2) 

According to the method we are adopting, we must 
form the differences on crossing the surface of 
discontinuity for each of the e'lllations, 

aE aE 
E(z + l:!z, t + M) = E(z, t) + (JZI:!z + dt M, (3) 

aH aH 
H(z + l:!z, t + M) = H(z, t) + dZ l:!z +.TtM, 

and then form the same differences for crossing 
the surface for each of Eqs. (l), where !'iz 
= v !'it. Using Eqs. (2), we get the following 

formulas for substitution into Eqs. (l): 

a, a 
Tt-+-v dz' 

This gives 

aE 
dz-+ e, 

a [aK;az] (H- Ev) + h- ev = 0, e = hv, 

where [ a·Kia z] = Ee- Hh. 

(4) 

Solving Eq. (4) we find the velocity of the front 
(that of the surface of weak discontinuity), 

a.EH ±Vi +a. (£2- H2) 
V1, 2 - ---=--.......,..1--,+,---rx.£2~---'--

where aKiaz = 0 (that is, E2 - H2 = f(t), or in 
particular,£ 2 - H 2 = 0 ), we get from Eq. (4) 

(5) 

(6) 

The velocity of a plane wave front is equal to the 
velocity of light in the vacuum in the following 
cases: 

l) a= 0, f3 = 0; i.e., for Lagrangians of the form 

L = const·I< + f(/2); (7) 

2) £2- J-J2 = f(t) (i.e. iiK/ilz = 0). (8) 

It is easy to show that for constants E,. = E0 and 
H = H0 and for variable E = £ and H = h if 

y y " ' c« E 0 , h « H 0 ( £ 2 "-' h 2 ,.._, £h "-' 0) and \f £ = h = 0 
on the surface of discontinuity of the derivatives 
aE I az and an I az, then the surface (the wave 

y " 
front of f,h) is propagated with the velocity 

V= 
- y EH ± V y (£2- H2) -· 1 

1-yH2 
(9) 

If one assumes that the principle of superposition 
is valid for weak disturbances of the field, then any 
plane wave 1, h, propagated in a constant field 

E0 , H0 , ( E0 1 H0 ; £ « E, h «H) and perpendicular 
to the constant field, breaks up into two linear 

Polarized rays £ , h and £ , h , each of which moves 
" y y " 

with velocities (5) and (9) *, respectively. 
In the general case of the presence of all the 

components of the field strength, the present method 
[ by using an equation of the form of Eq. (3) for 
each component] allows one easily to derive the 
following set of equations from the basic equations 
of the field: 

where 

Se + <Dh.x + IIhy = 0, 

Te + Dh.x + <Dhy = 0, 
Re- Th:c- Shy= 0, 

(10) 

<D::: {aE.~y + (3(ExHy + EyH.x) +YH.~Hy} 7? 

+ {a. (E.tH.\.- EYH y)- (3 (E;- E; - ft; + H;) 
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II::::- (~E~ + 2~E./f_,. + yH~ + 1) v 2 + 2 {~E.~Hy 

- ~(ExEy -H_,Hy)-YEyHx} v 

- ~ (E.r:Ez- H.~Hz)- yE.r:Hz; 

D:::: -(aE~ + 2~EY.HY + yH; + 1)v2 

Equations (lO) are homogeneous with respect to 
e, h.,. hy. Therefore, 

S <D II 

T D tD = 0. 

R-T-S 

Expanding the determinant, we get 

R (C1>2 - liD)+ S (TC!>- SD) + T (SC!>- TH) = 0. (11) 

Substitution of the expressions for R, ct>, etc. into 
Eq. (ll), leads to the equation for the velocity of 
the front [see Eq. (10) of Ref. 2]. Clearly, if 

E = E.,. H = H , E = E z = H., = Hz = 0, then Eq. 
{ll) [just as Eq. do) of Ref. 2] is unsuitable, for 
then e = 0, hx = 0, S = T = 0, R = 1, and Eqs. (lO) 
reduce to II = 0, ci> = 0, which give Eq. (5). Use of 
Eq. (ll) wo~ld give <P2 - TID = 0 which leads to 

incorrect values of v. 
From the derived Eqs. (5) and (9), it is seen that 

nonlinear equations, generally speaking, give a 
velocity tor the propagation of the ·wave front which 
is greater than the velocity of light in the vacuum 
(for a given choice of the Lagrangian). However, 
this leaves open the question of whether such a pos­
sibility really exists. We note that for a nonlinear 
Lagrangian, quantum electrodynamics gives a wave 
front velocity for a plane wave, which is not greater 
than the vacuum velocity of light. 

Analogously, one can get an expression for the 
propagation velocity of a wave front in scalar or 
pseudoscalar mesodynamics. The field equation 
for ¢ = ¢ ( x, t) is 

¢"- ¢.- a¢' 2 ¢"- a¢ 2¢ + 2a¢'¢¢' 

Here 

, a¢ . a¢ . a2L!aK 2 a2L!aKa! 
¢ =ax'"¢= at' a= aLjaK ' {3 = aL!aK ' 

a2L;al2 
r= aL;aK 

l -2 l .2 2- l 2 
K = -2¢ +2¢ 'I =2·¢ . 

Making use of[¢] = 0, [ ¢ 1 = [ ¢] = 0, [ ¢ ''] 

= ¢ xx f= 0 and the equations 

¢' (X + flx, t + ~t) = ¢' (X, t) + ¢ n ~X + ¢' ~t, 

;p ( X + flx, t + ~t ) = ¢< X, t ) + ¢ , flx + ¢ ~t, 

we get, by the same method, 

( l + a¢ 2 ) v' + 2 a¢¢' v + a¢' 2 - l = 0. 

From this, 

which follows from the formulas in Ref. l. 
All the results can he achieved by forming the 

differences of the divergence of the energy-mo­
mentum tensor across the surface of the disconti­
nuity. 

The author thanks Prof. D. D. lvanenko for 
pointing out the importance of the problem and for 
advice during the investigation. 

Translated by E. Saletan 
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* The question of the change of velocity of propagation 
of light in nonlinear electrodynamics was first investi­
gated by Svirski [e.g., see Ref. 3, M. S. Svirski, Vestn. 
(Moscow State University) 3, 43 (1951)]. 

** It should be noted that there is a difference in 
terminology in Refs. 2 and 4 [e.g., see Ref. 2, 
D. I. Blokhintsev and V. V. Orlov, J. Exper. Theoret. 
Phys. USSR 25, 513 (1953) and Ref. 4, A. Sommerfeld, 
Ann. d. Phys. 44, 177 (1914) ]: in Ref. 4, the velocity 
of the signal means the actual group velocity, whereas 
in Ref. 2, it means the wave front velocity. 
*** Sommerfeld showed that it is impossible to verify 

experimentally the result that only "forerunners" of 
extremely weak intensities travel at the vacuum velo­
city. However, using modem photoelements and ampli­
fiers, it is possible that one can construct an experiment, 
for instance, to detect weak light pulses traveling with­
out refraction through a plane parallel p,late or prism. 
One can make use of the fact that the 'forerunners " are 
unpolarized by a polarizer. 

**** See Eq. (10) in Ref. 2 [e.g., D. I. Blokhintsev 
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and V. V. Orlov, J. Exper. Theoret. Phys. USSR 25, 
513 (1953)] 
* This situation was considered in a discussion with 

V. I. Skobelkin. 
1D. I. Blokhintsev, Doklady Akad. Nauk SSSR 82, 553 
(1952) 
2 D. I. Blokhintsev and V. V. Orlov, J. Exper. Theoret. 
Phys. USSR 25, 513 (1953) 

3M. S. Svirski, Vestn. (Moscow State University) 3, 43 
(1951) 
4 A. Sommerfeld, Ann. d. Phys. 44, 177 (1914) 
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A N explanation as to the role played by the crys­
tal lattice in the phenomenon of superconduct­

ivity may be found in various studies of the 
crystalline modification of one or another of the 
substances at low temperatures. In three well­
known metals, thallium, titanium and zirconium, 
the a- modification exhibits superconductivity hut 
/3- modification has not been investigated at low 
temperatures. 

One of the methods yielding a high temperature 
modification in metastable form is that of sudden 
quenching. This method of quenching pure sub­
stances has been treated by Sekito 1 • In this 
work an x-ray investigation was made of the 
modification of thallium (prepared by Kal'baum) 
which had received rapid cooling of the metal in 
ice water . As is known, at 235 °C, thallium 
undergoes allotropical changes in which the density 
due to hexagonal close packing changes to that of a 
body centered cuhic 2 . Due to this quenching 1 

the sample now exhibits a face centered lattice 
structure. 

We have undertaken a low temperature study of 
the metastable modification of thallium (99.98% 
pure). The desired quenching may be achieved by 
several methods: 

l. Thallium melted in a glass tube over a 
Bunsen-burner and plunged into ice water (method 
of reference l). 

2. To avoid crystallization of melted thallium 
in the a-modification, stable at 0°C, the sample 
before quenching is slowly cooled in the oven from 
melting temperature (303 °C) to 290 °C. The 
sample is prepared by melting thallium in thin 

walled capillary tubes having a wall thickness of 
0.1 mm. 

3. For very rapid quenching the melted thallium 
is poured out under vacuum on a copper surface 
cooled to the temperature of liquid air. 

Immediately after the preparation of the sample, 
x-ray analysis followed. It appears that x-ray 
analysis does not reveal any difference between 
the quenched sample and that of ordinary thallium. 
This likewise applies to the measured magnetic 
moment of the samples at the liquid temperature of 
helium. In all samples, in quenched as well as 
in unquenched, the transition to the superconduct­
ing state was observed at 2.38- 2.4 °K. The 
marked absence of hysteresis (less than 1 %) and 
the abrupt transition from superconductivity to the 
normal state is evidence of the absence of impuri­
ties occluded in the sample. 

Analysis of the results of these methods shows 
that not one of the above methods lends itself to 
pr<>ducing the thallium in metastable modification 
as in contrast of the statements found in reference 
1. Thus the question of quenching pure thallium is 
left open. 

The authors wish to thank A. I. Shal'nikov for 
his continued interest in this work and also his 
laboratory assistant N. V. Belov at the Institute 
of Crystallography for interpreting the x-ray 
analysis of the samples. 

Translated by A. Andrews 
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1 S. Sekito, Z. Krist 74, 189 (1930) 
2 H. Lipsona, A. R. Stoks. Nature 148, 437 (1941) 

Possible Methods of Obtaining Active 
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A S was shown in reference 1, one must use 
molecular beams in order to make a spectro­

scope with high resolving power. In this reference 
the possibility of constructing a molecular oscil­
lator was investigated. Active molecules needed 
for self-excitation in the molecular oscillator were 
to be obtain~d by deflecting the molecular beam 
through inhomogeneous electric or magnetic fields. 
This method of obtaining active molecules has 
already been employed in the construction of a 
molect•.lar oscillator 2 


