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Necessary conditionsfor thermodynamic stability and sufficient conditions for the thermo
dynamic instability of a homogeneous phase are obtained in terms of the theory of the radial 
distribution function. The proposed problem of the determination of the radial distribution 
function is correctly formulatea. 

INTRODUCTION 

T HE use_ of partial distribution functions togeth
with the "superposition approximation" 

allows the application of the general apparatus of 
the Gibbs canonical distribution--- which is of very 
little effectiveness in the case of the liquid state--
to a certain nonlinear problem concerning eigen
functions and eigenvalues 1•2 . Let F 1 (q), 
F (q, q' ), F (q, q', q") be the unitary, binary and 
t~rnary disdibution functions, respectively. If we 
consider only a homogeneous phase (that is, a gas 
or a liquid), then the asymptotic expressions for the 
first two of these functions, when {by removal of all 
limits on the volume V up to infinity ) the volume V 
of the system and the number of particles N of the 
system are ?llowed to increase without bound [but 
with v =lim (V /N) = const], are 

Fdq)= I; F2 (q, q')=g(lq-q'j). (I) 

The function g(r) is the so-called "radial distribu
tion function". For the sake of simplicity we will 
assume the absence of strong external fields and 
will deal only with the simplest type of liquid (or 
gas), the intermolecular potential of which depends 
only on the distance between the centers of the two 
particles. If we allow that with sufficient exacti
tude, we may assume 

F3(q, q', q") = g (I q- q' I) (2) 

g (I q- q" I) g (I q' - q" 1> 

("superposition approximation"), then the function 
g(r) is determined by the intermolecular potential 
ct>{r) of the system, its temperature T and density 
1/v, by means of Bogoliubov's equation 1 

·- kT In g (r) = <P (r) (3) 

1 N. N. Bogoliubov, Problems of Dynamical Theory in 
Statistical Mechanics, State technical publishing house, 
1946. 

2 I. Z. Fisher, Usp. Fiz. Nauk 51, 71 (1953) 

oo r+P 

+ ~ ~ { ~ E(t) tdt} (g (p) -I) pdp, 
o lr-pr 

where 

t 

E (t) = ~ 1>' (t) g (t) dt, /, = 2r;a3jv. (4) 
CXJ 

Here k is'Boltzmann's constant, and we have in
troduced the dimensionless unit of length r1 = r /a, 
where a is a certain characteristic molecular 
distance, for example, the diameter of. a particle. 
In (3), as also from here on, the prime on the r has 
been omitted. 

The function g(r) must, moreover, satisfy the 
normalization condition 

R 

lim ..; \ (g (r) - 1) r 2dr = 0, (5) 
R-'>-co R ~ 

0 

arising from (l) and from the significance of f\. (q) 
and F2 (q, q') in terms of probability. 

Equations (3)---(5), taken together, present the 
complicated nonlinear problem of the determination 
of the eigenfunctions g(r;A)' and the eigenvalues A. 
The question of the spectrum of values A (for a given 
temperature T) is very important for the theory of 
phase transitions from a homogeneous phase, as 
has already been pointed out by the author3. How
ever, the problem of the determination of the spec
trum of values A for a given <l>(r) and T is unusually 
complex on account of the nonlinearity of Eqs. (3) 
and (4). It will be shown below that this problem 
can he solved, to a certain extent, by means of an 
investigation of the behavior of the solutions of 
Eq. (3) as r -> oo, It will then become apparent 
that the problem defined by Eqs. (3)--(5) has, in a 
certain sense, not been formulated altogether 
correctly, and from this will arise the necessity of 
correctly formulating "boundary conditions" on 
Eq. (3). The present communication is devoted to 

3 I. Z. Fisher, J. Exper. Theoret. Phys. USSR 21, 942 
(1951) 

154 



STABILITY OF A HOMOGENEOUS PHASE I 155 

the solution of this problem. In the correctly 
formulated problem the discontinuous character of 
the spectrum of eigenvalues of the parameter A 
arises automatically. In subsequent communica
tions the general theory will be applied to the 
solution of actual problems of the liquid state. 

2. BEHAVIOR OF THE RADIAL DISTRIBUTION 
FUNCTION AT GREAT DISTANCES 

For what follows it is convenient to change over 
from the function g(r) to the auxiliary function 
u(r) such that 

g (r) = e-<I>(r)/RT u (r). (6) 

If, at the same time, in place of E(t) we introduce 
the function E(t) according to the relation 

t 
1 r (7) E (t) = -- kT E (t) = ~ (e-<l>(t)/kT)' u (t) dt, 

co 

we then obtain from (3) an equation determining 
u(r), 

co r+P 

r In u (r) = ), ~ { ~ E (t) tdt} (8) 
0 !r-P! 

{e-<I><P>IkTu(p) -1} pdp, 

which contains only A as a parameter of the inte
gral equation ( to emphy the terminology of the 
theory of integral equations ). The temperature 
enters into (8) in a more complicated manner, in 
the comhinatio.n e-<I>(r)fkT , and must he given 
together with the potential <l>(r). 

We are interested in the behavior of g(r) or u(r) 
as r __. oo. The potential <l>(r) is assumed to ap
proach zero sufficiently rapidly for r--> oo. Then 
from (5) and (6) there follows the requirement that, 
in any case, u(r) --> l as r --> oo. Hence we may set 

u (r) = I ~- 9 (r) r, (9} 

where \cp(r)/r\ -. 0 as r -. oo. As a consequence of 
this we may linearize the logarithm in (8) for large 
r. Moreover, to the extent that E(t) rapidly ap
proaches zero with increasing t, only the values of 
p which are near r will be of consequence in the 
expression und~r the integral, while for r -. oo we 
may replace e-<I>(P)/hT by unity and extend the 
upper limit of the integral to infinity. If we denote 

00 

K(z) = ~ E (t) tdt (10) 
izl 

= 1/ 2 ~ (e-<~>U)/kT)' u (t) {z2 - t2) dt, 
izi 

where the last expression is obtained by integrat
ing by parts, taking account of (7), we finally 
arrive at the following equation determining ¢ (r) 
for r....,. oo: 

co 

cp (r) =I,~ K (I r- PI) 9 (p) dp (r~ oo). (11) 
0 

In order to simplify the following discussion we 
now assume that the intermolecular forces have a 
"finite radius of action, that is, that there exists a 
number a such that for r >a we have <l>(r) =0. This 
condition, we note, limits the generality of the 
problem only very slightly, since if <I> (r) extends 
to infinity (hut falls off sufficiently rapidly), then 
the "radius of cut-off" may be chosen arbitrarily 
large. Moreover, in the final results of the theory 
it is not difficult to go over to the limit a --> oo. So, 

<P (r) =-= 0; g (r) == u (r) r >a. (12) 

Then E(t) = K(t) = 0 for t > a and in place of (10) 
and (II) we have 

(J 

K (z) = 1 / 2 ~ (e-ct>(t)/kT )' u (t) (z2 - t 2) dt, (13) 
izl 

r+o 

cp (r) = I, ~ K (lr - p \) q> (p) dp (r ~ cr). (14) 
T---<J 

In order to find the non-trivial solutions of this 
equation, we assume 

(15) 

Substitution into (14) leads to the equation for the 
determination of y = y(A) 

LZ('r)=l (J.>O), (16) 

where £(')') is the Fourier transform of the kernel 
K(z) 

" 
Z (r) = ~ K(z) e;yzdz. (17) 

Equation (16), gener:ally speaking, has for every 
A > 0 several, or even infinitely many, roots, 

complex numbers in general: Yn = ,Bn(A) + iccn(A) 
(n = 1,2,3 ..... ). From the nature of A• and K (z) it 
follows that these roots occur in complex conjugate 
pairs, and from the evenness of the function K(z) 
it follows that for every root Yn (A) there is a 
corresponding root - Yn(A). Hence we conclude that 
to each number n ther~ correspond four roots: ± ,Bn 
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(A) ± i"'n(A). However, the roots with negative 
imaginary parts lead1according to (9), (12) and Q.5~ 
to results for g(r) which manifestly fail to satisfy the 
normalization condition (5), and therefore must be 
discarded. The two roots ±,Bn(A) + i I "'n(A) I then 
remain, and the corresponding cp(r) may be obtained 
essentially in the form 

rp (r) = Ae-l"'ir cos (~r + o), ( 18) 

where the numbers A and o remain undetermined in 
the approximation under consideration. In accord
ance with (9) and (12), we then arrive at the 
following general form of the radial distribution 
function for large distances between particles 

'1 ~A -'a lr (~ g(r) = 1 + r ..LJ ,e In cos ~nr +On). (19) 
' n 

This result corresponds to the known behavior of 
g(r), found from experiments on the scattering of 

x- rays in liquids: with increasing r the functior 
g{r) approaches unity with an oscillation which 
diminishes to zero. We wish to emphasize that 
expression (19) is true for all physically allowed 
values of A. Smallness of A (that is, smallness of 
the density) was not presupposed in the derivation 
of (19), and this distinguishes our result from the 
analogous results of other author~· 5 . 

The function 11(r) = g(r)- 1 is the "correlation 
function" of statistical mechanics (see references 
6, 7 ), used in the calculation of fluctuations in the 
density. As is well known, a very rapid decrease 
in 11 (r) with increasing r is required for the absence 
of correlation of the fluctuations in density in ad
joining macroscopic volumes. According to (19) 
this requirement will be met if all the l"'n I are not 
zero and are sufficiently large. Moreover, the 
absence of correlation of the fluctuations in density 
in adjoining macroscopic volumes for a system in 
a state far from the limit of thermodynamic stability 
is rigidly derivable from Boltzmann's principle 
(see Leontovich 6) and is confirmed by experiments 
on the scattering of light in liquids and gases. 
Hence for such states all the I "'n(A) I in (19) are 
different from zero and we may introduce an enu
meration of the roots 'Y., of equation (16) in the 
order of the increasing magnitude of their imaginary 
parts: 

4 J. Kirkwood, J. Chern. Phys. 7, 919 (1939) 
5 M. Born and H. Green, Proc. Roy. Soc. A, 189, 455 

(1947) 
6 M. A. Leontovich, Statistical Mechanics,State 

technical publishing house, 1944 
7 L. D. Landau and E. M. Lifshitz, Statistical 

Physics, State technical publishing house, 1951 

0 <I cxl (A) I< I CX2 (A) I< I CX3 (A) I<... (20) 

This enumeration is preserved even in the case of 
very small I"' n I , and we shall hold to it continu

ously below. Of course, for different values of A 
the enumeration of the roots Yn may be different. 

We note that for A-+ oo ( that is, in the ideal gas 
approximation) we have I "'n I -+ oo , as is clear 
from (16). 

3. INSTABILITY OF STATES WITH "'l (A) =0 

We shall now show that states of the system for 
which "'l = 0 in (19) are thermodynamically abso
lutely unstable, that is, they do not correspond to a 
minimum free energy. As proof of this we need 
more than the single fact of the presence of corre
lation of the fluctuations in density in adjoining 
volumes. It is known, for example, that such 
correlations occur in the vicinity of the critical 
point {see references 6 • 7 ), that is, in states which 
are of themselves stable. 

Let us suppose that for a certain value of A we 
have "' 1(A) = 0, but "' 2 (A) .;, 0. Since in the subse
quent estimates, due to their thermodynamic charac
ter, the behavior of 11 {r) at small distances will not 
be of consequence, we can neglect the exponential 
members in (19) and write 

(21) 

We note at once that 11(r) is Green's function for all 
space of the linear differential operator 

(22) 

where ~ is the Laplace operator. 
We now assume that the state of the system with 

correlation function (21) is thermodynamically 
stable, so that there exists an equilibrium density 
of free energy J0 (),, T)~he self free energy for 

which is F = S fod V. Let f - [0 be the de

viation of the equlibrium density of free energy from 
its own equilibrium value as a consequence of local 
fluctuations in density. Since in our case there is 
an evident correlation of the fluctuations in density 
in different regions, then, as is known from the 
general theory, the magnitude of f - [0 will de
pend not only on the density itself, but also on the 
gradient of the density ( se e6 • 7 ) • If cp is the 
relative density, then f- fo appears as a certain 
differential form in cp, and for small fluctuations 
this form will be quadratic: f - f o = K (¢, ¢ ). Let 
us use, further , the fundamental result of 
Leontovich, according to which the correlation 
function 11(r) is Green's function for all space of 
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the Euler-Laplace operator L (cp) = corresponding to 
the quadratic differential form K (cp ,cp) (see 6 ). 

Since we already know the function v (r ) and the 
operator L (cp), then by (22) we can readily set up 
the quadratic form K(cp, cp) and also f- {0 • For 
the latter quantity we obtain 

--? 2 f-fo = B {(VC?)2 - ~1~2}, (23) 

where B is a certain constant (with respect to ¢). 
Thus to the correlation function (21) there corres

ponds an expression of indeterminate sign for 
f- {0 , and, consequently, {0 cannot be a minimum 
in the density of free energy. The state of the 
system with oc 1(A.) = 0 is absolutely unstable, since 
a minimum free energy does not exist there. 

4. INCORRECTNESS OF THE PROBLEM OF THE 
DETERMINATION OF g(r) WITH THE 
REQUIREMENT OF NORMALIZATION 

IN EQ. (5) 

The results obtained above may be formulated in 
a way which affirms that the necessary condition 
for the stability of a homogeneous phase is the 
absence of purely real solutions of Eq. (16), that is, 
the condition 

I Im {'h (f-)} I >O for I,>O. (24) 

Correspondingly, the condition 

Im {·(1 (f-)} = 0 for t.>O, (25) 

is sufficient for the instability of the system. 

The question of the sufficiency of the first 
condition and the necessity of the second remains 
open, since it cannot be treated merely by 
investigation of the behavior of g (r) as r --> oo. If, 
in spite of this, we confine ourselves to such an 
investigation, as we nre at present compelled to do,. 

then the following circumstance is to be noted. The 
normalization condition (5) for the function g (r) 
is somewhat limited, being superimposed on the 
behavior of the solution of Eq. (3) for r ... oo. It is 
unsatisfactory that this limitation admits, along 
with the stable solutions, solutions which are 
unstable (that is, physically unreasonable) in the 
sense indicated above. Actually any function (19) 
with arbitrary ocn (A) satisfies the condition (5), 
even if some or all of the "' are zero. Hence we 

n 
may say that the problem of the solution of Eq. (3) 
with the supplementary requirement (5) has been set 
up incorrectly since its answers are not those of the 
corresponding physical problem. Of course, the 
question now arises as to whether it is actually 

impossible to formulate the question of the solu
tion of Eq. (3) on a physical basis in such a way 
that physically unreasonable solutions may not oc
cur. 

In the works of Born and Green5, and of Kirkwood 
and his collaborators 4 •8 on the theory of liquids, 
a more stringent requirement is introduced in place 
of the normalization condition (5), namely, the 
requirement of volume integrability of the function 
g(r)-1: 

co 

~ [g (r) - 1] r 2dr < + oo. (26) 
0 

It is readily seen that this requirement is fulfilled 
only if I"' 11 > 0 in (19), and, consequently, it 
permits the separation of the solutions correspond
ing to stable states from those which are physi
cally unreasonable. However, this requirement appears 
too strict, and for the purpose of distinguishing the 
stable solutions it would suffice to require the 
fulfillment of a less severe condition relative to the 
behavior of g (r) for r--> oo. What is even more es
sential is that it is not possible to prove this 
condition physically without previous knowledge of 
the solution of Eq. (3) in the form (19). Hence it 
is not suitable as an initial requirement on the 
solutions of Eq. (3) and as one capable of replacing 
condition (5). The latter is connected simply with 
the fact that the integrability requirement (26) does 
not arise immediately from the Gibbs canonical dis
tribution, and hence is evidently supplementary--
the above superposition approximation---restricted, 
superimposed on g (r ). Cosidering the connection 
of the left part of condition (26) with the isothermal 
compressibility of the system, one finds 

co 
41t' r r 2 _ kT 
v} g(r)-l]rdr- v2(-iJp(iJv) -1, (27) 

o T 

erroneously*. Relation (27) is obtained from the 
comparison of two well-known equations for the 
squares of the fluctuations in the numbers of 
particles in a certain volume G: 

- kT 
(ANa)2 = Na v2(-iJp/iJv)r (28) 

(ANa? = No {1 + N~ \ \ {g (I ql- q2D (29) 
v a (CJ) <<'n 

--~- 1} dql dq2 J' 
* The incorrect exposition of this equation is 

toler~tt~d also. by the author of the present paper in the 
-survey . 

8 J. Kirkwood, E. Mann and B. Alder,]. Chern. Phys. 
18, 1040 (1950) 
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with the latter having been rewritten in the form 

(!:::.No)2 =No { 1 + 4; ~ [g (r)- 1] r2 dr}. (30) 
0 

The erroneousness of Eq. (27), accepted in many 
works as one of the basic equations of the theory 
of liquids, is evident. Equation (28) clearly does 
not hold in the presence of the correlation of the 
fluctuations in different regions (see Leontovich 6 ), 

and the exact Eq. (29) may be replaced by the ap
proximate Eq.(30) only if the sufficiently rapid 
tendency of g (r) - 1 to zero for r -+ oo is known 
beforehand. [For example, for a hypothetical func
tion g (r) of form g (r )_, 1 + Arne-ocr the condition 
(26) will be fulfilled for any oc > 0, but equations 
(28) and (27) will not hold for n > 0 and small oc). 
Hence Eq. (26), which does not arise from the 
general Jaws of statistical mechanics, is unaccept
able as an initial supplementary requirement on the 
solution of Eq. (3). 

The actual solution of the question of the correct 
presentation of the problem for Eq. {3) lies in an 
altogether different direction and is connected 
with the validity of the transition to the limit 
N, V -+ oo, which has already been accomplished in 
{3). At the basis of Eq. (3) lies the admission of 
(1), in particular the admission that the system 
under consideration is such that for removal to 
infinity of all walls bounding its volume V and the 
simultaneous preservation of its average density 
(N/ V)= l!v unchanged, we get asymptotically 
F (q) -+ 1. It is perfectly clear that a preliminary 
n~cessary condition for this must be the finiteness 
of the size of the walled layer of the system, where 
as a consequence of surface effects it is certain 
that F (q) -F 1. In the opposite case Eq. (3) is 
devoid of physical meaning. 

5. ON THE SIZE OF THE WALLED LAYER OF 
THE SYSTEM 

Consider a molecular system of volume V and 
number of particles N, bounded, for example, by 
plane walls. Then let N and li' increase without limit, 
keeping unchanged the relation ( V /N) = v and also 
the position of one of the walls. We consider the 
latter situated in the xOy plane-, and the system 
itself extending in the direction of the positive 0 z 
axis. In the limit we obtain a semi-infinite system 
occupying the entire .-ight half-space. We will as
sume the wall to be ideal, although the final results 
would not be altered as long as the potential of the 
interaction of the wall on the particles had a suf-· 
ficiently rapid fall-<>££. Conditions (1) do not hold 
in the neighborhood of the wall, and it is clear from 
symmetry considerations that F1 (q) = J<;_ (z). One may 

readily satisfy oneself that in our system the 
partial distribution functions satisfy equations 
completely analogous to those of Bogoliubov 1 , but 
in which the integration extends only over the right 
half-space. For example, for F1 {z) we obtain 

kT dF1 (z) 
dz 

1 r olD (I q - q' I) 
+ v ~ iJz F2(q,q')dqq' = 0 

(z'>o) 

(31) 

in which the coordinates of the point q may be set 
equal to {O,O,z). In order to obtain from this an 
approximate expression for ]\ (z), it is necessary 
to express F (q,q') in terms ofF (z). The super-

. . 2 . . h" h 1 f 11 . position approximation, w IC we are o owmg, 
corresponds to a relation between J<;_ and ~ of 
form 

F2 ( q ,q') = F1 (z) F1 (z') g (I q - q' 1). (32) 

Actually, if we return to relations (1) and (2), we 
notice that, for example, f'a (q,q~q") may be inter
preted as the binary distribution function for two 
particles for a given {and fixed) position of the third: 
~ (q,q:q") = ~ (q,q' I q .. ).Analogously g(lq- q" i} 
may be interpreted as the unitary probability density 
of position of one of the particles for a given and 
maintained position of the second: g ( I q -q" I ) = 
F 1 (q I q"). [We note that there is a similar univer-

sally prevalent representation of the radial func
tion of the distribution g <I q I ) = F (q I 0 ), 
although according to the definition \t is necessary 
to connect it not with fj but with F2 : 

g( I q- q" I ) = F2 (q, q ); both points of view are 
equally valid ). Hence relation (2) may be written 
thus: 

(33) 

= Fl (q I q") Fl (q' I q") g (I q- q' 1). 

That which is given and fixed beforehand in our 
problem is the position not of the third particle, 
but of the wall, and (33) is physically transformed 
into (32). Thus, allowing (32), we remain within 
the framework of the superposition approximation 
and do not introduce new limitations on the partial 
distribution functions. 

Inserting (32) and (31), going over again to the 
dimensionless unit of length, and using relation (4), 
we easily integrate the resulting equation and ob
tain 
k TIn F1 (z) (34) 

+ 2~ ~ E(iq-q'i)F1 (z~)dq' =C. 
(z'>O) 
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Since we are considering a homogeneous phase, 
we must require that Ji (z) -> 1 for Z-> oo, This 
determines the constant of integration 

co 

c = 21- ~ £(p)p2dp. (35} 
0 

If, a~ above, we go over from g (r) and E(t) to u (r) 
and E(t) by means of relations (6) and (7), we ob
tain an equation for the determination of F (z) 

1 
00 

r- " In P1 (z) = - 2). ~ E (p) p2dp + ~ (36) 
0 

~ E (/ q- q' I) P1 (z') dq'. 
(z'>o) 

The last member may be simplified by introduction 
of cylindrical coordinates z ~ p, cp in place of the 

cartesian coordinates q '= (x ',y, z '). Then 

~ E (/ q - q' /)PI (z') dq' 
(z'>o) 

(37} 

00 00 

·= 27t ~ { ~ E [V p2 + (z- z')2] pdp} P1 (z') dz' 
0 0 

00 00 

= 27t ~ f ~ E (J t I) tdt} P1 (z') dz' 
o I z-z' I 

00 

= 27t~ K(/z-z'i)P1 (z')dz', 
0 

where the kernel K (z) is identical with the kernel 

K(z) in (10). Thus we have finally 
00 

In P1 (z) =- 21- ~ E (p) p2dp 
0 

+ ). ~ K (/ z- z' J) P1 (z') dz'. 
0 

Now let z -> oo, Setting 

P1 (z) = 1 + 1\J (z) 

and reckoning l!f(z) I <: 1, we readily simplify 
Eq. (38) and obtain 

00 

(38) 

(39) 

'1> (z) =A~ K(l z- z' I) 1\J (z')dz' (z-> oo). (40) 
0 

This equation is identical with Eq. (ll); whence 
it follows that the function r fg (r)- 1) for r -+ oo 

behaves like the function F1 (z) - 1 for z -> oo, a 
result of some importance for the theory of liquids. 

If, as above, we allow the intermolecular forces 
to have a finite radius of :actiont a, then, in precisely 
the same way as in Sec. (2), we find 

PI (z) = 1 +]An e- I Cl.n I z cos (~nZ +an), (41) 
n 

wh~re IXn (.\)and (3n (,\) ar! the same as in (19), 
while the numbers A and o remain undetermined 
and possibly differentfrom the corresponding A 

• n 
and on in (19). Assuming the former enumeration 
of the IX (.\) according to (20) to be correct, we 

n 
see at once that the magnitude I IX (,\) 1- 1 is the 
effective size of the walled layer ~f the system, in 
which F1 (z) is notably different from unity. The 
special case oo:1 (,\)='()considered in (3) thus 

corresponds to an infinitely extended "superficial 
layer". 

We consider it necessary to remark, in order to 
avoid misun~rstanding, t_!.lat the periodic solution 
F 1 (z).....,l + A1 cos (f3,z + 8 1 ) appearing in (41) for 
oc (,\) = 0 has no relation to the crystalline state. 

l 

6. CONCLUSION 

It is not difficult now to formulate the correct 
requirement which must be satisfied by the behav
ior of the solution of Eq. (3) for r -> oo. Since 
Eq. (3) relates only the spatial properties of a 
homogeneous phase and requires for its correctness 
the identity f~ (q) = 1, this indicates that in the 
problem of a system bounded by a plane wall the 
preliminary condition must be F1 (z) -> 1 for z -> oo, 

Since, on the other hand, it appears that the behav
ior of F1 (z) - 1 for z -> oo in the problem of a sys
tem bounded by a wall is identical with the behav
ior of r(g(r) - lJ for r -> oo in the problem of the 

unbounded system, we infer that the preliminary 
condition required for the correctness of Eq. (3) is 
that 

r{g (r) -1) -> 0 for r-> oo. (42) 

• 
It must be emphasized that this inference is ob-

tained merely from a single comparison of Eqs. (ll) 
and (40) and does not require for its jestablishment 
preliminary knowledge of the solutions of (19) and 
(41). 

It is important to note that the nonfulfillment of 
the first of the conditions (l) necessarily brings 
with it the nonfulfillment of the second. Hence we 
may also say that the requirement (42) is a require

ment that g ( I q- q'l ) =F.;, ( q,q 'I ) (exactly, 
apart from terms which go to zero for N-> oo). Non
fulfillment of condition (42) signifies, then, that 
g( I q- q' I );of~ (q,q'). although g(r), as a solu-
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tion of the formally stated problem concerning Eq. 

(3), that is, of the purely mathematical problem, 
may possibly exist. However, it is clear that such 
a solution lacks physical meaning. 

Thus we may say that the correctly presented 
mathematical problem of finding the radial distribu
tion function g(r) for a given intermolecular poten
tial ct> (r) and given thermodynamic parameters T and 
A, adequate to its physical content, is included in 
the solution of the problem of the eigenvalues A 
and eigenfunctions g(r; A) of equation (3) under the 
additional requirement (42). The normalization 
requirement (5) is automatically fulfilled at the 
same time. 

The solutions g (r) considered above which 
correspond to thermodynamically absolutely un
stable states do not belong to eigenvalues A of 

the problem formulated in the indicated manner. 
The spectrum of eigenvalues A now shows itself 
to be generally speaking, discontinuous, consist
ing of several continuous bands. The connection 
of this situation with the theory of phase transi
tions is evident. We will devote more attention to 
it in subsequent communications. 

In conclusion we wish to remark, in order to 
avoid misunderstanding, that the states of the 
system were qualified by us in all the above as 
stable in a limited sense, that is, such a state may 
in reality prove to be only metastable. Correspon
ingly, instability is everywhere understood abso
lutely. 

Translated by Brother Simon Peter, F.S.C. 
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