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A statistical method representing a semi-classical approximation employing the self­
consistent field method is developed for application to heavy nuclei. The method takes 
into consideration unfilled spin and charge states for various charge-symmetry functions of 
interaction between nucleons with the separation dependence having the form- g 2e -. Kr I r. 
Equations have been derived and analyzed both for the case of completely filled state of 
nucleons as well as for the " charge" or "spin" states. Formulas have been obtained for 
the basic "isotopic" and supplementary term of the equation expressing the energy of a nucleus. 
A discussion is included regarding the influence of various properties of nuclear forces on the 
beha;"ior of a complex nuclei. 

INTRODUCTION 

T HE investigation of a heavy nuclei by a 
statistical method which takes into ac-

count the properties of nuclear forces, predicted 
by theory and qualitatively substantiated for a sys­
tem consisting of two nucleons, is of interest both 
for the explanation of properties of heavy nuclei, as 
well as for the study of nuclear interactions. A 
number of recent papers have been devoted to the 
study of nuclei using statistical methods. lvan­
enko and others 1 • 2 used the methods of Thomas­
Fermi in their analysis of nuclear shells. The 
nuclear potentials were considered to be functions 
of distance f(r) of the type of Yukawa potential 
(without exchange and independent of spin). In 
.the work of Kompaneets 3 the self - consistent 
method was applied to the study of a nucleus with 
saturation spins and charges, with an interaction 
function, representing one half the sum of ordinary 
exchange forces, having the same co-ordinate de­
pendence f(r). 

In this paper a derivation for the statistical 
theory of nucleus is presented, which permits analy­
sis of both the case of the saturation of spins and 
charges and the case where one or the other is in­
complete for various charge-symmetry functions of 
interaction between nucleons (without regard to 
tensor forces). The solution obtained is in a 
general form in the sense that the derived formulas 
contain coefficients which depend upon the form of 
operator of the function of interaction, and there-

1 D. D. lvanenko and D. Rodichev, Doklady Akad. Nauk 
SSSR 70, 605 ( 1950) 
2 

D. D. lvanenko and A. A. Sokolov, Doklady Akad. Nauk 
SSSR 74, 33 (1950) 

a A. s. Kompaneetz, Doklady Akad. Nauk SSSR 85, 301 
(1952) 

fore yield concrete results. An expression has 
been derived for the energy of a nucleus which 

takes into account the kinetic energy of nucleons 
the energy of "direct" and " exchange " inter­
action·, as functions of two densities p 1 and p2 , 

which represent respectively the density of 
neut~ons and protons under conditions of complete 
filling spins and incomplete saturation of charges, 
and densities of particles with spins directed 
"upward" and "downward", under the con-ditions 
of complete saturation of charges and incomplete 
saturation of spins. On the basis of the variation 
me~hod and equation for nuclear potentials, a sys­
tem of equations has been obtained which speci­
fies the distribution of the total density of nucleons 

P 0 = p 1 + p2 and the charge or spin density p 

= p 1 - p2 . In view of the small magnitude of 
p / p0 equations have been obtained for p 0 ,in the 

first approximation which are independent of p, 
and which have the same form as they do in the 
case of complete saturation of spins and charges. 
In this case p is determined by linear differential 
equations with coefficients dependent upon p0 . 

Study of the equation for p 0 along with the equa­

tions for energy leads to the selection of inter­
action functions which insure complete saturation 

of nuclear forces; the ratio of "exchange'' forces 
to "ordinary" has proven to equal four. By making 
use of the magnitude of the parameter g2 1 K' de­
termined by the condition of existence of deuteron, 
the possibility is established that heavy nuclei 
can exist in stable state having binding energy 
proportional to A, and radii R = r 0 A l/ 3 where r 

is roughly equal to the radius o.f action of nuclea~ 
forces. On the basis of these parameters, which 
determine the interaction function of two nucleons, 
independently of the exact form of the potential 
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hole, expressions are also derived for "isotopic" 
and supplementary term o( A, Z) of the semi-empir­
ical equation for the energy of a nucleus [Ref. 4, 

Eq. (1.8) J. With the aid of the supplementary para­
meter-- having experimental value r0 -- it is pos­
sible to compute coefficients of the various terms 
of the expression for the energy of nucleus and to 

estimate the mass of the meson. The parameter y 
also appears in the theory, taking into account the 
dependence of nuclear forces due to spins. It has 
only a small quantitative effect on the results and 
is used merely for qualitative deductions made 
during analysis of distribution of p. 

I. GENERAL THEORY 

Let us examine the function of interaction he­
tween two nucleons expressed in the following 
form: 

where 

(l) 

(2) 

P - an operator which can assume any one of the 
following forms: 

p = Po = 1' p = P, = 1 + fx ;2) (3) 

P = P = _ 1 + (;I~) 1 + (-;I :;2) 
r 2 2 

or can he a linear combination of these quantities. 
Operators P a, P T, P r correspond, as is known, to 
rearrangement of spin, charge and space co­
ordinates of the two nucleons. Let us express 
the energy of a nucleus in the following form: 

E = ~ [Tl (?1) + T 2 (pz)] d" (4) 

+ ; ~ [Al (PI)+ Az (pz)] d" 

+ cx1, z ~ A1.2 (pl,p2) d-r. 

+ ~ ~~[pt(1)PJ(2)+P2(1)p2(2)]j(ri,2)d"ld"2 
.+ h 2 ~~ P1 (1) Pz (2) f (rl, 2) d'r1 d-r2, 

4 E. Fermi, Nuclear Physics 

where the first term represents kinetic energy_: 

(5) 

= 2 (~ ')''· 7t2 ft2 ( '{, ..L ''·)· 
10 1t M P1 ' P2 ' 

the second and third terms are "exchange" inter­
actions, respectively, for "like" and "unlike" 
particles, the fourth and fifth, analogous forms 

of" direct" interaction. The coefficients a, a 1 , 2 , 

{3, {3 1 2 depend upon the form of operator used in 
Eq. (l) and are computed in the same manner as 
the functions A 1 , A 2 , A 1 , 2 , i.e., with the aid of 
the wave function 'P of nucleus in the form of a 
determinant composed of the individual wave 
functions ¢. (X.) of all N nucleons (X. represents 

' ' ' the various space co-ordinates, spin and charge 
co-ordinates of nucleons). It is assumed that 

cp(Xi) = •'(;(x;,y;,Zi)"f/;(~;)C {c;)., (6) 

where T/ and <; are functions only of operators 
az , Tz respectively. The energy of interaction of 

all nucleons can he expressed as follows: 
N N 

V= ~ ~~~~?;(l)qJ;(2)U1,z?i (7) 
1=1 J-=1 

(l)?j(2)dXldXz 
N N 

- ~ -~ ~ ~~ 'tj (1) q;; (2) U1, z 9; 
t=l )=1 

(1) q;j (2) dX1 dXz 

= J +I{=+ ~1;, j + ~- ~l{i,j. 
i. j i, j 

Taking a summation over the spin and charge 
variables in the expressions for f i,j and 
Ki,j from Eq. (7), and taking into account Eq. (6), 
we express th1 direct interaction ] in Eq. (7) by 
ordinary dene: .ties 

N, N, 

Pl = ~ I 'fi I 2, Pz = ~ I 'f j I 2, 
i=l j=l 

exchange interaction K by the mixed densities 

N, 

P1 (1,2) = ~ 'f; (I) •jl;(2), (8) 
i=l 

N, 

r>z (I, 2) = ~ •'(i( I) ·?; (2) 
j=l 
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( N 1, N 2 -- the number of particles of both 
"types" correspondingly}, and introduce the 
notation: 

~~I rdl,2) l 2 /(ri,2)d-cld-c~= ~Al(Pl)d-c, {9) 

~~I p:l(l,2) l 2 /(rJ,2)d-cld-c2 =~A2CP2)d-:, 

~~ P1 (I, 2) r; (I, 2)f(rl, 2) d-:1 d-e~ 

= ~ A1, 2 (pl! P2) d-e, 

we derive the values of coefficients given in 
Table 1 for the four cases of Eq. {3). 

In the case in which the operator P (1,2) in Eq. 
(1) consists of a linear combination of any of the 
operators of Eq. (3), a situation which corresponds, 
physically, to the possible forms of interaction, 
the coefficients a, a 1, 2, [3, f3 1, 2 are evaluated 

with the aid o_f the corresponding linear combin­
ations frorr. coefficients of Table l. In Table 2 are 
represented the values of coefficients and some 
other quantities for a number of possibilities con­
sidered in the following Sections. In both tables 
in the column "Type of Saturation" line "a" 
torresponds to saturation of spins, line "b", to the 
saturation of charges. 

The functions A 1 , A2 and A 1 , 2 were computed on 

the basis of Eqs. (2), (8) and (9), assuming that 
tj;i' tj;i have the form of plane waves, and sub­

stituting summation over i, j, by integration in 
momentum space p 1, p 2 ; the weight of each state 
was taken, as in Eq. (5), to be equal to two (two 
spin states or two charge states of nucleons). This 
computation is analogous to the computation of the 

exchange energy of an electron system (Ref. 5, 
Sec. 2) with the replacement of the Coulomb force 
by Eq. (2) and with consideration of the fact that 
the maximum momenta p 11 , l' p 11 , 2 are, in our prob­

lem, different for particles of the two "types". 
Making use of the relation 

(10) 

and analogous relation for p 2, we obtain the magni­

tudes of A 1 , A 2, A 1 , 2 as functions of densities 

plans p2: 

g2 x4 {[ 1 e;4 ( 1 1 A1 2 = -- - + - p 1• P 1• 
' TC 3 ~4 4 1 2 ( 11) 

1 ., 1 ., ) ---p ·--p. 
~ 1 2 2 

- 2/a S3 f(Pt + P2) arctan s (p~1 • + P~1 ·) -- (pl- f;2) 

X arctan s (p~'·- p~l·)] 

R2 x' [( 1 e:2 ) A 1 = ---· -. -L-- r/la 
TC3 24 1 2 l'1 (12) 

5 P. Gombas, The Statistical Theory of the Atom and 
its Applications 

TABLE I 

Operator I Type of I 
Saturation j " I "1.2 I f3 I f3t,2 

P 0 =1 : } _1/2 0 1 1 

Pr : } 1 1 _1/2 0 

a -1 0 1/2 1(2 

Po b _1/2 _1/2 1 0 

a 
I 

_1/2 _1/2 1 0 

p~ b 

I 

-1 0 1/2 1i 2 

I 
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- ~ s3 o arctan2so'la + s4p'la- _i_ s2 p'l, J 
3 ol '1 · 1 6 1 ' 

s = (3 I r-)'la (r- j x); (13) 

A 2 is analogous to A 1 , with pl' substituted for 
p2 . For the case of saturation of spin and charge 

states p 1 = p2 , and A 1 = A 2 = A 1 , 2 . Introducing 
new variables p 0 = p 1 + p2 and p = p 1 - p 2 and at 
the same time decomposing Eqs. (5), (ll) and (12) 
in powers of p!p 0 , ignoring powers higher than the 
2nd, we obtain an expression for the energy of 
nucleus [ Eq. (4)] in the following form: 

(14) 

where 

Eo= 3/1o Co~ p~/, dT.- Go (o: + 0:1, 2) (15) 

~ [(1 + 3x2) In (1 + X 2) -4x3 arctan x 

+ 312 X 4 - X 2] dT.- (g I 4) (~ + ~1, 2) ~Po Vo dT., 

·- (g I 4) (~- ~1. 2) ~ r v d", 

( 3 , '/a p~la 
x=2'1t 21t") 7' 

\ , exp{-xlr-r'l} d 
Vo(r)=g.)Po(r) lr-r'l -:, 

(16) 

(17)· 

( 18) 

(19) 

Vis analogous to V 0 , with p0 <r') substituted for 
P <r, >. 

Making use of the variation method, the equation 
for p 0 and p is found from the condition 

with the supplementary conditions 

~Pod" = N = A = const, (21a) 

~ p d" = I = const, (21b) 

where I is the isotopic number A - 2Z, if prep­
resents the charge density, and spin number 2s 

( s - the resultant spin in the components of n ) if 
p represents the spin state density. 

On the basis of Eqs. (14) - (21) we obtain the 
following system of equations 

1 , 2a0 4 2 Co P01•- (o: + 0:1, 2)--p;;- [x (22a) 

+ x 2 1n (1 + x 2)- 2x3 arctan xJ 

+ o:1, 2 ( 2-2 In (lx~ x 2
) -In (1 + X 2)J]} =- 1.0 , 

:o { i c0 p~l,- ~ :: x 4 [(a.+ a.1, 2) (22b) 

- ~ (~ - P1, 2) v = - i , 

which must be solved simultaneously with the dif­
ferential equations for nuclear potentials V 0 
and V. Here A0 and A are Lagrange's multipliers 
corresponding to the Eqs. (21a) and (21b). 

2. NUCLEI WITH SATURATED SPINS AND CHARGES 

The density distribution of nucleons p 0 is de­

termined in this case ( p = 0 ), on the basis of Eqs. 
(19) and (22a), by the following system of equa­
tions: 

(24) 

where V 0 must satisfy the condition of finiteness 

at the center of the nucleus and condition 

(djdr) [l.n (r V0)]r~R = - x 

(R- radius of nucleus). The solution of this 
system depends upon the values of coefficients 
a+ a 1 , 2 and f3 + f3 1 , 2 . On the basis of Eqs. (23) 
and (21a), Eq. (15) for the energy E 0 assumes the 
following form: 
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(25a) 

\',!' (x)d-c- l.o A J I .· 2 ) 

where 

~ (x) = (1 + 2x2) ln (1 + x 2)- 2x3 arctan x (25h) 

Lagrange's multiplier A is connected withE 
0 0 

by the relation 

(26) 

and represents the binding energy of one nucleon. 
If A0 does not depend on A, the effect of saturation 
takes place: E 0 =-A0A, and it is this specific con­
dition which limits the choice of the function of 
interaction. It is easy to see that saturation, with­
out any doubt, takes place for forces which lead to 
the disappearance of direct interaction in Eq. (15), 
i.e., in the case [3 + fJ 1 , 2 = 0. Actually, in this 
case, the term which contains V 0 in Eq. (23) also 

disappears, and p0 , determined by this equation , 
is constant within the hounds of the nuclei (the 
boundary conditions for V 0 , on the basis of Eq. (24) 

and with constant density Po within a nucleus of 
radius R, with p0 = 0 with r > R, are satisfied auto­

matically here. From Eqs.(25a) and with the aid of 
(26), with P 0 = const, we obtain the following 
equation: 

Ao =-I~ CoPo'1• + 2 (~ + ~1 • 2 ) :: q; (x), 

Here, on the basis of Eq. (17), 

X= 3 (;r;/3)'/a (1jxr 0), 

(27) 

(28) 

where r 0 - radius of the space belonging to one 

nucleon. From Eq. (23), with [3 + (J l, 2 = 0, and 
from Eq. (27), taking into account Eqs. (28) and 
(18), it is possible to determine )..0 and r 0 through 
the constants g, K, a+ a 1 , 2 ; therefore A0 and r0 do 
not depend on A in this case, which characterizes 
the effect of saturation. Excluding )..0 from Eqs. 
(23), (27), and taking into consideration Eq. (28), 
we obtain the following equation: 

3 _10M g2 
x - -:rtn2x (IX+ ~1. 2)j(x), (29a) 

where 
(29h) 

In (1 + x2) 
x2 

The root of this equation X 0 , and therefore also 
the magnitude of 1/ Kr 0 depend not on the exact 
value of g and K, hut merely on the magnitude of 
g 2 / K which on the basis of theory of deuteron is 
approximately constant.' 

With the aid of relationg 2 IK"' 112"h 214M, and 
employing operator 3, Table 2 (which satisfies the 
conditions f3 + f3 1 , 2 = 0 ), we find Xo = 5; taking 
operator 4, likewise satisfying this condition, with 

y"' 0.15, ( 1 + y )(g2 IK) = ( g 2 IK) tp "' 77 2-h 2 I 4 M, we 
obtain Xo"' 4. On the basis of Eq. (28) an approx-

imate equality is obtained for the radius of action 
of nuclear forces 1/K and the radius of space avail­
able for one nucleon, r 0, which agrees with the ex­
periment. The values of Xo determined in this 
manner, assure a positive value of Ao which can he 
computed on the basis of Eqs. (27) - (29) from the 
relation 

(30) 

With Xo = 4, ro = 1.5 X w-13 em we obtain for Ao 
the value of approximately 3 MeV. At that, from 

Eq. (28) 1/K"' 2 X w-13 em, which corresponds to 
the mass of a meson p."' 200 me. The experimental 
value A0 "' 8 MeV is ohtainedfrom Eq.(30) with 
r 0 "' 0.9 X 10-13 em. It should be noted that the 
magnitude of r0 computed in this manner must ac­
tually he somewhat smaller than the experimental 
value, as a result of ignoring not only Coulomb 

forces of isotropic and surface effects hut also the 
peculiarities of the method of variation. 

It must also he pointed out that for the forces 
we have considered, which lead to saturation [i.e., 
to the disappearance of the term containing V 0 in 
Eqs. (15), (23) ], the condition aE 0 1 a R = 0 is 
automatically satisfied, thus insuring stability of 
the surface of the nucleus. 

Let us now examine the question regarding pos­
sible existence of a solution to the system of 
Eqs.(2 3) and (24) with f3 + (3 1 -/= 0 which gives 

,2 
approximately constant p 0 in the major part of vol-
ume, i.e., the solution, the zero approximation of 
which, within the nucleus (away from the shell), 
has the form: 

1 
Po = const = --

4/a7tr~ ' 
(31) 
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If such a solution is possible then Eq. (27) remains 
roughly correct and with the condition (31) from 
Eqs. (23) and (27) we obtain the generalization 
(29) in the form 

(32) 

1 + (rx + rx1,2) j(x) J; 
which determines the equality X= x0 • 

If operators 1, 2 (Table 2) are chosen, the solu­
tion of Eq. (32) is obtained in the form :X = Xo 
= 0.6. From this ( 1/ K ): r 0 = 0.2. Also A turns out 

to he negative, i.e., this solution does not cor­
respond to a stable state of the nuclei. On the 
basis of general considerations regarding the role 
of negative direct interaction and also on the basis 
of investigation of the polarity of second differ­
ential of E 0 , we also come to the conclusion that 

it is impossible to have stable states of nuclei 
under the existence of forces whose expressions 
contain operators of type 1, 2, and which are satur­
ated. The same applies to forces examined in Jlef. 
3, which differ from forces corresponding to oper­
ators of type 1 (Table 2) ~y the polarity of their 
exchange operator and which leac, therefore, to 
positive energy of exchange and to disappearance 
of the entire interaction for the condition of two 
nucleons with even l. 

3. NUCLEI WITH UNSATURATED SPINS 
AND CHARGES 

The distribution of spin or charge density p on 
the basis of Eq. (22h) is determined by the expres­
sion: 

(g'2) ({3- {31,2) V-A 
p = K(p o) ' 

(33) 

where K ( p 0 ) is the expression in curly brackets 
in Eq. (22h), divided by p0 ; moreover, V is related to 

p by the equation 

~V-x2 V=-4'ltgp. (34) 

From Eqs. (33) and (34) we obtain the equation for 
potential V: 

where 
(35) 

(36a) 

(36h) 

from Tables 1 and 2, K and 11 2 are positive for 
ordinary, exchange and "mixed" forces. 

Assuming further that p 0 is approximately 

constant within the nucleus, we obtain solutions 
to Eq. (34) which are spherically-symmetrical and 
regular at the origin, of the form: 

v = csh !Lr _!:_. 
r !L2 (37) 

We then get, from Eqs. (33) and (36), 

( B sh !J.T + 1 x2)' , 
p = - --,- K !L2 /,. 

Constant C and the related constant B are de­
termined from boundary condition 

[ddr In (r V)] = - x. 
r=R 

This yields 

(38) 

(39) 

B _ - ({3-{31,2) 2'ITg2 zR + 1 (40) 
- K2!L2 x sh !LR + !L ch !LR" 

On the basis of Eqs. (21a), (21h) and also (38) and 
(40), we obtain the follow' 1g expression for A: 

I, =-Po KI/ A[ ( 1 - ::) F (R) + :: ] 

where 

I 
=--bA, 

(41) 

F (R) 3 ( + xR) 1 - (th !LR 1 !LR) . (42) 
= (!LR)2 1 1 + (!J.Ix) th !LR 

A is negative since, for all forces of interest; 
112;::: K2, 11R » 1. 

Further, taking into account the values of coef­
ficients f3 - f3 L_2 for the different cases(from 

Tables 1 and 2 ), we note that B is positive for 
exchange and "mixed" forces and is equal to zero 
for ordinary forces; therefore,, Eq. (38) for distribu­
tion of p contains a term (determined by exchange 
forces) which increases from the center of the 
nucleus toward the periphery (with p 0 = const ). 

This means that "excess" neutrons in a nucleus 
with unsaturated charges and saturated spin states 

experience additional mutual repulsion; and similarly, 
mutual repulsion exists between "excess" nucleons 
with parallel spins in the case of saturation of 
charges and unsaturated spin states. 

We wish to point out that the above effect of ad­
ditional repulsion does not disappear even in the 
presence of spin dependence( for example, for the 
case of forces corresponding to operator 4, Table 
2), as a result of the small magl}itude of y. How-
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ever, the effect diminishes for the case of unsatur­
ated spin states and saturation of charges and in­
crease's in the case of unsaturated charges and 
saturation of spin states because of the "spin" 
terms. This means that, for example, for a nucleus 

presented in a more expanded form by taking into 
account the value of Kp 0 , as well as Eqs. (18) and 

(28) and the relationship between p 0 and r 0 : 

(47) 

of type A= 4n+2, whichisofgreat importance from the 
· 1t' 11.2 g2 2 [ ( In (1 + x 2 ·' 1 energy point of view, (if Coulomb forces and dif- -;-- M + . -- <X1, 2lh (1 + x2)- (<X + IX1t 2) 1- !) 

. ) 2 X X X 2 j 
ferences of mass of proton and neutron are Ignored , · 
a state exists with unsaturated spin sta~es and 
saturated charges, which corresponds to a singlet 
charge state and triplet spin state with two "ex­
cess" nucleons (proton and neutron with parallel 
spin) in the shell model. 

In this manner, the statistical model, as well as 
the free particle model, can explain the existence 
of nuclei of type "Z - odd, A - even" with spin 
equal to unity, by taking into account spin inter­
action. 

The expression for E 1 can be studied in more 

detail on the basis of the newly found distribution 

of p. 
On the basis of Eqs. (16), (22b), (21b), we obtain 

(43) 

from which, taking into account the value of A from 
Eq. (41), we obtain 

E _ !._ PoK 12 

1 - + 2 [1- (x2;t-t2)] F(R) + (x2/t-t2) A 

b J2 
= +z-:4· 

(44) 

The magnitude o.f F (R) is small for heavy nuclei 
and changes slowly with changes in R = r 0A 113 ; 

for this reason the magnitude of b, which de­
termines A, and EI' is practically independent of. 
A. 

From Eqs. (41) and (44) it follows that : 

/, = -_(aE1 jiJ/)A =- (iJEjiJJ)A, (45) 

which is in accord with the physical meaning of 
the Lagrange multiplier A which corresponds to 
condition (2lb) of the variational problem. For the 

case in which p signifies charge density, I= A 
- 2Z, and Eq. (44) assumes the form 

EI=2b(;-z)2 fA. (46) 

We have obtained, in this manner, the "isotopic" 
term of a semi-empirical formula for the energy of 
a nucleus [Ref. 4, Eq. (1.8)] with coefficient 2b, 
determined by Eq. (44). This coefficient can be 

[1- (x2/t-t2)] F (R) + (x2/t-t2) 

Also, on the basis of Eq. (36a) 

(48) 

where tf; is the numerator of the fraction in Eq. (47). 
On the basis of these formulas it is possible to 

determine the numerical value of the coefficient 
2b in Eq. (46) for different types of forces, con­
sistent with the requirement p 0 "" const. 

For the interaction which contains an operator of 
type 4, Table 2, with parameters r 0 , g 2 I K, y, we 

obtain from the previous section, 2b"" 100 MeV, 
which agrees in order of magnitude with the experi­
mentally determined value of 77.3 MeV. 

In the case when p signifies spin state density 
with saturation of charges, I= 2S in Eqs. (43)­
(45), and we obtain a positive term in the expres­
sion for the energy of the nucleus having the form: 

(49) 

( S - resultant spin of the nucleus). But nuclei 
with saturated charges (the number of protons 
equal to the number of neutrons) and unsaturated 
spin states must belong to the group "A - even, 
Z- odd", and specifically for them, the additional 
empirical term in the expression 8( A, Z) for the 

energy of a nucleus [Ref. 4, "Eqs. (1.8) and (1.9)] 
is positive. 

The coefficient 2b is computed, by use of the 
same formulas (47), (48), as in the case of an iso­
topic member, but with different values of the co­
efficients a 1 , 2 , {3- {3 1 , 2 in correspondence with 
Table 2 (case "b" instead of case "a"). The 
computed magnitude of 2b in this case, with the 
operator and constants used in the computation of 
2b for isotopic term is approximately 80 MeV. 

Although Eq. (49) differs in appearance from the 
corresponding empirical term ( rvA-314 ), it is 
interesting to note that for the heavier, stable 
nuclei of the type studied ( N 1 4 ), we have the 

theoretical value E s ""6 MeV, and the empirical, 
""4.7 MeV. The same type of correlation is ob­
tained also for nuclei of other types. 
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Taking into consi.deration the roughness of our 
approximations ,particularly for the case of un­
saturated spin states (in connection with the 
neglected tensor forces), the correspondence in 
sign and order of magnitude of the theoretical 
formulas and empirical formulas indicates that the 
effect of unsaturated spin states, as also the 
isotopic effect, is correctly indicated by the 
statistical theory. 

In closing we wish to call attention to the fact 
that the results of the present work indicate the 
applicability to research on the properties of heavy 
nuclei of the statistical method, which was devel­
oped here on the basis of nuclear forces that re­
tain their basic properties predicted by meson 
theory (the type of distance function, exchange and 
spin terms). By choosing the parameters expres­
sing these forces, corresponding both with the 
basic properties of the deuteron and the phenomenon 
of scattering of slow nucleons by nucleons, as well 
as with the property of saturation found in complex 
nuclei, proper orders of magnitude and sign have 

been obtained for various terms in the expression 
of binding energy of heavy nuclei. Also, the cor­
rect relationship between the radius of a.ction of 
nuclear forces to the radius of space available to 
one nucleon has been found, as well as the explan­
ation for the behavior of certain types of complex 
nuclei based on the analysis of influence of ex­
change and spin terms. 

The method used here can be generalized to in­
clude tensor and Coulomb forces, which would im­
prove the accuracy of the results of computations 6 • 7 

6 F. I. Kligman, J. Exper. Theoret. Phys. USSR 14, 323 
(1944) 

7 F. I. Kligman, J. Exper. Theoret. Phys. USSR 18, 346 
(1948) 

dealing with the quadrupole moments of the nuclei. 
It must also be pointed out that, in the work re­
ported by Gombas 8 which appeared after the prep­
aration of this article, the statistical method is 
analyzed for application to nuclei with saturated 
spins. This work differs from ours both in the 
types of nuclear interactions (purely exchange 
forces between proton and neutron, and also, as 
in BetheandBacher 9 , Sec. 6, spin dependent forces 
between like particles) and also in the method of 
derivation of theory (by means of solving various 
problems and analysis of related questions). The 
interactions studied by Gombas 8 are equivalent in 
their effect to saturation of forces, and have in 
their expressions operators of type 3, Table 2, given 
in this paper. 

Taking into account the difficulties of interpret­
ing experimental data pertaining to scattering of 

10 h b . f . fast nucleons by nucleons on t e as1s o semi-
empirical nuclear forces, it may be appropriate to 

call attention to the semi-empirical character of the 
modem nuclear statistical theory the further re­
finement of which will be apparently concerned 
with the development of the meson theory of 
nuclear forces. 

Translated by B. S. Maximo££ 
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8 P. Gombas, Usp. Fiz. Nauk 49, 385 (1953) 
9 H. A. Bethe and R. F. Bacher, The Physics of Nuclei, 
Revs. Mod. Phys. 

10 V. I. Gol'danskii, A. L. Liubimov and B. V. Medvedev, 
Usp. Fiz. Nauk 48, 531 (1952) 


