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Other phenomena*, observed in our previous ex
periments with tungsten at large current densities 
and not observed under ordinary conditions, de
pend considerably on the current density. These 
phenomena were considered by us as indications 
of an anomalous state of the tungsten caused by 
a flow of current of high density. The dependence 
of energy at the instant of explosion - E(tj -

* The dependence on the energy E (t c) on j (t) 
[e.g., seeS. V. Lehedev and S. E. Khaikin, J. Exper. 
Theoret. Phys. USSR 26, 629 (1954) and S. V. Lehedev, 
J. Exper. Theoret. Phys. USSR 27, 605 (1954) ], anom
alies of emission [e.g., see S. V. Lehedev and S. E. 
Khaikin, J. Exper. Theoret. Phys. USSR 27, 487 (1954)], 
peculiarities of melting in experiments with interrupted 
pulses [e.g., seeS. V. Lehedev, J, Exper. Theoret. 
Phys. USSR 27, 605 (1954) ]. 

on j and emission anomalies is observed in the 
experiments treated in present paper, not only on 
hmgsten, but also on nickel. New peculiarities 
of emission ! see point 4 of the Conclusions) 
were discovered which we also could not explain 
by means of a supposition that the metal is in a 
normal state . We note that the conditions of the 
experiments on nickel and on tungsten were ma
terially different because of the considerable dif
ference in melting point temperature (for example 
the measured anode currents were different by sev
eral orders of magnitude). The identical charac
ter of the phenomena observed in these metals 
near R = R8 shows that they are caused by pro
cesses in :Ctals independent of the value of their 
melting point temperature. 

Translated by S. Paskwer 
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The wave function and the energy of the lowest state of a sli&htly non-ideal Bose gas 
are determined by means of the method of " auxiliary variables ', with accuracy to terms 
of second order relative to the smallness of the parameter of the energy of interaction. 

I. INTRODUCTION 

T HE problem of the investigation of the wave 
of a system of a large number of interacting 

Bose particles arose in connection with attempts 
at the formation of a microscopic theory of the 
superfluidity of He II. In spite of a series of 
successes in this direction1,2 we are today 
still far from the completion of such a microsco
pic theory. 

If we select as a model for the liquid helium a 
slightly non-ideal degenerate Bose gas, then it is 
possible , as one of us has shown 2, to explain 
the phenomenon of the superfluidity of He II by 
the properties of the energy spectrum of such a 
system. However, inasmuch as the slightly non
ideal Bose gas cannot be regarded an entirely 

1 L.D. Landau, J. Exper. Theor. Phys. USSR 
ll• 592 (1941). 

2 N.N. Bogoliubov, Izv. Akad. Nauk SSSR, Ser. 
Fiz. II, 77 (1947). 

satisfactory model of liquid helium, the necessity 
arises of imp~oving the theory of the non-ideal 
Bose ~as, taking into account interactions 
that are not small. Up to the present time only 
such systems with weak interactions between 
particles have been studied theoretically. 

Wave functions of the lowest state of a system 
consisting of a large number of weakly interact
ing Bose particles have been determined by 
Bijl3. However the results of his work are in 
error because of the lack of validity of the 
approximations used (i.e., terms that are not 
small in magnitude have been neglected). 

In the present work the correct wave functions 
of the lowest state of a Bose system with weak 
interaction have been determined by means of the 
method of "auxiliary variables" with accuracy 
to terms of second order of smallness. 

3 A. Bijl, Physica 7, 869 (1940). 
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JI. APPLICATION OF THE METHOD 
OF AUXILIARY VARIABLES TO 

BOSE SYSTEMS 

We consider N interacting particles, without spin 
that obey to Bose-Einstein statistics. To 
describe the system we introduce the variables 
1\• the Fourier coefficients of the density 
operator, according to the formula 

N 
1 ""' .-ik•r. Pk = .r- ...:::.J e 1 

r N . 
J=l 

(k =I= 0). (2.1) 

The quantity P.. =.j N is a constant and cannot 
be employed as 0 a variable. 1/...JN is a normal
izing factor. 

The variables A: appear to he natural 
"collective" variables for describing oscillatory 
processes in systems that consist of a large 
number of interacting particles, and were applied 
earlier· to systems of Fermi particles in the 
works of Zuharev4, Tomonaga5 , and Pines and 
Bohm6 

We shall seek a wave function of the systems 
in the form 

(2.2) 

which does not contain explicitly coordinates of 
the particles hut only the auxiliary variables PJc· 
This representation of the wave function we 
shall call thefk-representation in what follows. 
This is a feasible arrangement since the wave 
function of the system is symmetric relative to the 
coordinates rh··· .,rN and Pk is also a symmetric 
function of the coordinates particles. 

The number of variables in the wave (unction 
(2.2) is infinite, and they are not independent. In 
order to go over to the usual representation of the 
wave functions, it is necessary to substitute Eq. 
(2.1) for Pk in Eq. (2.2); the resultant function 
will he symmetric relative to r .. 

The Schrodinger equation fdr a system of N 
particles has the form 

. ocp 1i2 N 
tn iJt = -2m ~ 11rj cp (2.3) 

i=l 

4 D.N. Zubarev, J. Exper. Theor. Phys. USSR 25, 
548 (1953). 

5 J'i. Tomonaga, Prog. Theor. Phys. 5, 544 
(1950). 

6 D. Pines and D. Bohm, Phys. Rev. 82', 625 
~ (1951). 85,338 (1952); 92, 609(1953). 

It is now required to put this equation in the pk -
representation for a system of Bose particles. 

We express the interaction operator in terms of 
the variables pk·: 

-.!. ~ <I> 0 r,. - r . I) 
2 ,..w, I lJ 

],+], 

(2.4) 

"'N N 2 N 
= ..W 2Vv(k)pkp-k + 2Vv(0)- ~2Vv(k), 

k+o k 

where v(k) = J<I>(r} e -ik·rdr is the Fourier coef
ficient of the energy of interaction. We introduce 
the Bose-Einstein kinetic energy operator in the 
Pk representation, carrying out the differentiation 
of the function (2.2) as an implicit function of the 
't.: 
1 

1 
T=YN 

~ 1i2k2 ( a2 a ) + f 2m - dpkdp_k + Pkdpk · 

(2.5) 

Making use of the Eqs. (2.4), (2.5) for the po
tential and kinetic energy, we write the Schrodinger 
equation in the Pk representation in the form 

X~ 
k,, k, 

k1+k,+O 

+ {~v(O)- :V ~v(k)}~· 
k 

We have thus shown that if the function (2.2) is a 
solution of Eq. (2.6) in which the p are the inde
pendent variables, then the functio~ 

( 1 N • ) 
cp t, .. "VR ~ exp {-t (kri)}, ... 

J-1 

is a solu-

tion of the Schrodinger equation, symmetric relative 
to r1 , ... ,rN' We can therefore work with Eq. (2.6) 
in what follows, regarding the Pki as the indepen
dent variables. 

The Hamiltonian operator in Eq. (2.6) is non-
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Hermitian, since the transformation t~ the variables 
p, is not a canonical one. The principal part of 
t~e Hamiltonian can be made Hermitian if we 
introduce a new wave function <I> by the substitu
tion 

<I>= exp {- ! ] PkP-k} cp. 
k 

Then Eq. (2.6) takes the form 

in a<D = {" [- n2k2 a2 
at LJ 2m apkop_k 

k+O 

_ ""'(h2 k2 Nv (k)\ N2 } f 4m + 2iT) + 2Vv(O) <D. 

Transforming to the variables qk, 

pk = V2 ),k q k , 

"4 (N v(k) + n2k2)' = n2k2 kv 4m 4m' 

and we obtain Eq. (2.8) in the form 

where 

E<k> = v/"!.; v <k> h2k2 + (h2k2)2 
V m 2m 

We introduce the Bose operators 

bk=,/-(-a-+qk)• v 2 oq_k 

b~ = V1z(- o:k + q-k)' 

(2.7) 

(2.8) 

(2.9) 

(2.10} 

(2.12) 

(2.13) 

with the help of which the Schrodinger equation for a 
system of interacting Bose particles can be written 
in the form 

(2.14) 

X [( 1 + A~.) b-k, + (At - 1) b.i,J[( 1 + ll) b-k, 

+o-:. -t>b:.J} <~>. 
where the constant £ 0 , 

Eo= ~v(O) + ~ ~(E(k)- n;~2 - ~ v(k)) (2.15) 
k 

has been eliminated by means of the substitution 

<D ~<I> exp {E0t fin}. 
Thus the Hamiltonian of a system of interacting 
Bose particles consists of two parts: the diagonal 
part, which represents the sum of the Bose density 
fluctuation operators (or elementary phonon 
excitations) with energy E (k), and a non-diagonal 
part, that describes the phonon interaction. The 
energy of the elementary excitations in a Bose gas 
agrees with the obtained earlier2. 

The first sum in Eqs. {2.6), (2.8), (2.11), {2.14) 
represents the principal part of the Hamiltonian, 
the second sum is the secondary {and, in generaL; 
small) part of the Hamiltonian. If the interaction 
between phonons tends to zero, thenAi-+ l. In this 
event, sizeable terms remain in the second sum of 
Eq. (2.14). These terms contain the operators 

( k + k + b +k k ) b k b k . However, inasmuch 
"kl 2 - l- 2 - l - 2 

as we are interested only in the wave function of 
the lowest state, this term can be omitted, since 
it has no effect on the wave function of the vacuum. 

3. THE RELATION BETWEEN THE METHOD 
OF .. AUXILIARY VARIABLES" AND THE 

METHOD OF BIJL 

Bijl's method 3 consists of the following. An 
approximate wave function of the lowest level of 
a system of N Bose particles is required which 
satisfies the Schrodinger equation {2.3). The 
interaction energy between the particles is as
sumed to be small, proportional to a parameter £ 

We choose as the zeroth approximation a uniform 
particle distribution density. The usual method in 
the theory of excitation, in which a decomposition 
of the desired wave function is expressed in a 
series of powers of £, is not suitable here, since 
the corrections to the wave function of the zeroth 
approximation turn out not to be small, and to be 
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proportional to a positive power of the total number 
of particles, N. For sufficiently large N, the 
correction can therefore be arbitrarily large. Bijl 
showed that it is possible to avoid this difficulty 
by expressing the logarithm of the wave function 
in powers of £, rather than the wave function itself. 

Setting 
(3.1) 

Bijl sought a new unknown functionS in a power 
series in £. We shall attempt to calculateS without 
making use of this decomposition. This precaution 
is necessary, because the coefficients for the 
neglected terms, which are proportional to £2, are 
not small, and cannot be disregarded. 

If we substitute (3.1} in Schrt;dinger's equation 
we obtain the following for the logarithm of the 
wave function: 

fil N n2 N 

- 2m~drS- 2m ~(vJS)2 (3.2). 
}=1 j=l 

+; ~<l>(lr1,-r1.1)=E. 
h.,.i. 

In this equation, Bijl neglected the second term 
(proportional to £2 ); we keep this term. 

We first seekS in the form of a sum of binary 
functions: 

s (rl, ... , rN) = ~s <I r1,- r1.J). 
j,J. 

We decompose the function S(r) in a Fourier 
series 

S(r)= ~ ~a(k)ei(kr), 
k 

and write (3.3) in the form 

(3.3) 

(3.4) 

S(r1, ... , rN) =~~a (k)pkp-k. (3.5). 
k 

making use of Eq. (2.1). With the help of Eqs. 
(2.4) and (3.5), Eq. (3.2) becomes 

+ _! (N)2 ~ (k ) (k ) h2 (k1 k2) 
N V ""-Ja 1 a 2' m 

k,k.; J 

where 

iNS 1 "N E 0 = 217 v(O)- 2 ~ V v(k) 
k 

(3.6) 

(3.7) 

+ ~ ~a(k) n:~. 
k 

An exact solution of Eq. (3.6) is difficult, but it 
is possible to simplify the procedure if we leave 
only the principle part {corresponding to 
k + k = 0) in the second sum. This procedure is 
e<iuiv~lent to a neglect of the correlation between 
particles. For the present, we accept this rough 
approximation, since it permits us to establish a 
simple connection between the method of "auxil
iary variables" and the method of Bijl. Below, 
in Sec. 4, a more rigorous method is given for 
obtaining the wave function of the lowest state of 
a system of Bose particles. 

After some simplification Eq. (3.6) takes the 
form 

N "'{- 2 N n2k2 a2 (k) + h2k2 a (k) + v~k)} v ""-! V m m 2 (3.8). 
k 

which can be satisfied by setting 

~ 2VN'f1.2k2 a2 (k) + fl2k2 a (k) + v(k) = 0 (3.9) 
m tu 2 ' 

whence 

N n=v· 
The negative sign is chosen for the radical 

since we are interested in the minimum value of the 
energy. 

The logarithm of the wave function of the lowest 
state will be 

(3.11) 

and the corresponding wave function is 

Po=exp{! ~PkP-k} 
k 

(3.12) 

e { 1 "' E ( k) } 
)( X p - 4 £.J 11,~2 I 'l.m Pk P -k ' 

k 

where E(k) is the energy of elementary excitations 
in the weakly non-ideal Bose gas, given by 
Eq. (2.12). 

The first factor in the wave function (3.12) is 
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identical to the factor which we introduced in the 
wave function of the lowest state in order to make 
the principal part of the Hamiltonian (2.6) Hermi
tian. It can be demonstrated by direct substitution 
that the function (3.11) satisfies the principal part 
of Eq. (2.6). 

If we neglect the term in Eq. (3.9) which is 
quadratic in a(k), we get Bijl's result: 

(3.13) 

The logarithm of the wave function of the lowest 
state in this case is 

(3.14) 

and the corresponding wave function is 

(3.15) 

The function {3.16) satisfies the differential 
equation 

~ {h2 k2 iJcp 1 } f 2m Pk iJpk + 2 nv (k) pk p_krp (3.16) 

= (E -E~)rp, 
where 

E~ = ~v(O)- ~ ]nv(k). 
k 

Equation (3.16) differs from the principal part 
of Eq. (2.8) in that part of the kinetic energy 
operator of the phonons is missing from it: 

This omission is unjustified, and, consequently, Bijl's 
method always gives a rough approximation to the 
wave function of lowest order of the system of 
Bose particles. Thus the doubt expressed by 
Landau and Lifshits 7 on the validity of one of the 
author's results 2, since they did not agree with 
those of Bijl 3 , is unjustified. 

Making use of {2.4) and (2.1), and carrying out 
the integration over the variable k' we write the 
logarithm of the wave function in the form 

7 L. D. Landau and E. M. Lifshits, Statistical 
Physics, 2nd edition. 

(3.17) 

or, after integration over the angular variables, 

s = - ~ ~ ~ { r <I> (r) rdr (3.18) 
i,] 'ii 

'ij 

+ r~. ~ <I> (r) r2dr} , 
I} 0 

This form of the wave function coincides with that 
deduced by Bi jl 3 • 

In obtaining Eq. (3.18) from Eq. (3.14), we have 
carried out a five-fold integration over the three 
variables k and the two angular variables of the 
radius vector r. It also would have been possible 
to obtain Eq. (3.18) directly, by solving the 
Schrodinger equation in the variables rj, neglect
ing the quadratic terms in S, as was done by Bijl ~ 

The equation (3.11) for the logarithm of the wave 
function can also be written in the form 

1 m 
S = - 41t2 11.2 n (3.19) 

X ~ _1 f {E(k) _ nnr} sin krii dk, 
.. rii j 2m k 
,, 1 0 

where the integration has been carried out over the 
angular variables. 

4. THE WAVE FUNCTIONS OF THE LOWEST 
STATE OF A SYSTEM OF INTERACTING 

BOSE PARTICLES 

In the preceding section, we detrmined the zeroth 
approximation wave function of the lowest state 
of a system of interacting Bose particles, making 
more precise the method of Biil. We now return to 
the more systematic method of the Bose system, which 
makes possible the determination of the wave func
tions of the lowest state in the form of a decomposi
tion in powers of a parameter of the smallness of 
inter action. 

As a subsidiary problem, we determine the 
ei~~:<mfunctions of the operator 

Ho=y.fE(k)( aqk~~q-k +qkq-k). (4.1) 

which is the principal part of the Hamiltonian (2.11) 
The equation for the eigenfunctions of Eq. (4.1) 
cal} be written in the form 

(4.2) 
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where ifi and q~ are the real and imaginary parts 
of qlr.. ~he eigenfunctions of Eq. (4.2) have the 
form 

<I>n,,n, = JJ' exp {-qkq-k} 
(k) 

Here n , n are positive integers; H are the 

(4.3) 

1 2 , n 
Hermitian polynomials; fi denotes that the prod-

uct omits the k which li~k) in the hemisphere (for 
example, kz > 0), since q~ and q~ are connected 
by the relations qc = qc and ~ 8 = -q 8 • 

Jr. -Jr. Jr. -Jr. 

The function (4.3) corresponds to the energy 

In the lowest energy state, n 1 = n 2 = 0 and the 
eigenfunction of (4.3) will be 

<I>o = exp {- ~ fqkq-k } 

= exp {- h PkP;-k }· 
k 41\k 

(4.4) 

(4.5) 

By means of Eq. (2. 7) we get for the wave function 
of the lowest state 

9o = exp {: ~(1- "~JPkP-k }• (4.6) 

which coincides with the function (3.12) obtained 
earlier, since we have, from Eqs. (2.10) and (2.12): 

E(k) = n2k2 j).'fr_2m. 

One can verify directly that the wave function 
(4.5) corresponds to the lowest energy level by 

demonstrating that the ~--the operators of 
"annihilation" of phonons-- yield zero when they 
operate on (4.5) 

The wave function of the state in which there 
is one phonon with wave number k is 

<I>k = b~ <I>o = V2q_k<I>O (4.8) 

N 

= - 1 v1- h exp {i (krj)} <I>o. 
Ak N j=1 

, In a similar way we can obtain the wave function 
of the state in which n phonons are present. We 
note that the P1r. appear in the eigenfunctions of 
t~e !deal Bose gas, corresponding to the energy 
n k /2m. 

The wave functions (4.5), (4.6) and (4.8) of the 

lowest and excited states of a Bose gas are wave 
functions of zero approximation only, and are not 
of sufficient accuracy to permit us to find wave 
functions of arbitrary approximation. We shall now 
give an account of the method of constructing such 
functions for the lowest energy state of the sys
tem. 

The Schrodinger equation for the system of 
interacting Bose particles in the P1r. representation 
(2.14) can be written in the form 

where 

X(1 + 1-~.)(1 + l.i,) b-k,b-k,; 

1 
H~=-VN 

X [( 1 + /.~,)( 1 - l.'fr.,) bJtb-k, 

+ (1 + !.'fr.,)(I- 1.~.) bJtb-k,J, 

0=£-£0 • 

(4.9) 

(4.1(} 

Here the Hamiltonian operator is divided into three 
parts: H , H , and H2 , corresponding to the zero , 
first, an~ se~ond order relative to the small para
meter 

2 V h2 t 2 14m 1-). = 1- . 
k nv (k) + (h2k2 I 4m) 

(4.ll) 

In the zeroth approximation we get the equation 

(4.12) 

which has the "vaccum" solution given m Eq. 
(4.5), <1>=<1>0 ,1(80 =0. 

The second, non-ideal part of the operator H0 
yields zero in operating <I> 0 , and does not change 
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the wave function in zeroth approximation. 
We attempt to solve the equation (4.9) with the 

aid of the theory of excitations. We seek a solu
tion of Eq. (4.9) in the form 

<P =<Po+ <PI+ <1>2 + ... ; (4.13) 

cB =cEo+ eSt + cB2 + · .. , 
where <Ph <1>2, ••• ; cf)h {)2 , ••• are the correc
tions of the first and second order to the wave 
function and the energy of the lowest state. Subs
tituting Eq. (4.13) and comparing the terms of 
corresponding order, we get the following equations 
for the functions <I> 1, <I> 2 : 

(Ho- cEo) <PI= (cf)I- H 1) <P0, (4.14) 

(Ho- cEo) <P2 =({)I- Hl) <PI + ({)2- H2) <Po, 

Inasmuch as 

HI<Po = 0, 

the first equation of the set (4.14) is satisfied for 
<P1 = 0, cf)1 = 0, the corrections of the first ap
proximation become zero. The second equation of 
the set (4.14), which gives ,i.e., the corrections to the 
wave function and the energy of the lowest state 
can be written in the form 

X (1 - A~ 1 ) b=:k,-k, bJtb"t.<P0 • 

We seek the solution of this equation in the form 
of a decomposition in the operator bt 

(4.16) 

+ ~ M (k1, k2) bif:bit<P0 

kJ,kl 

where the functions L(k), M (k , k ), N (k , k ) 
are to be determined. 1 2 1 2 

Substituting (4.16) in Eqs. (4.15) and equating 
coefficients for terms which contain identical 
operators, we get the following set of equations for 
the unknown functions L, M, N and {)2: 

1 1i,2 

E(k) L (k) = v·-~ -r(k', k + k') (4.17) 
N k' m 

-k 1 1i,2 I , Ak 
= ak, I •'fi ~ -4- (k,, k1 + k2) A ~ A , 

r Jv , m k +k k 
k I I I 

I 

X (1 + 1.~ +k' ){1 +I,~,) {N (- k1 - k' -k;) 
1 ll 2 2' 

+ N (ktt k;) + N (k;, k1)}, 

{E(kt + k2) + E(kt) + E(k2)} N(ktt k2) (4.18) 

We see from the second equation of (4.17) that the 
function M(k+k',-k') is different from zero only 
for k = 0, which is impossible, since k :F 0, by as
sumption; consequently L(k) = 0. 

We find the value ofc!)2from Eq. (4.18): 

2 £2 =- N (4.19) 

)( ~ (~)2 (k1k2) (1 + ).t) (1 + At) Ak,+k, 
k,, k1 Bm Ak/k 1 {E (kt + k2) + E (kt) +1! (k2)} 

k,+k1 -FO 

Because of the practical continuity of the spec
trum, we can go from the summation to integration 
in Eq. (4.19) and obtain an expression forcf)2 in the 

form 2N ( n,z )2 
{32 = --.- -- (4.20) 

(27t)6n2 Bm 

')(. ( {" (k1k2) A~,+k 1 (1- A~,) (1-At.)dk1dk2 

~ ~ A!,J,i, { E (kt + k2) + E (kt) + E (k2)} 
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4N I ~2 )2 
+--1-

(2n)6n2 \ Bm 

\\ (k1, k1 + k2) (k1k2)(1 -At) (1- A~,+k,) (1 + At) dk1dk2 

~~ At {E(k1 + k2) + E (k1) + E(k2)} 

For second order corrections to the wave func
tion of the lowest state, we get 

(4.21) 

(k1k2) (k2, k1 + k2) (1 + At+k,) (1 -At) (1 - 1-.t,) bt. b_±k, <Do 

AtE (k1) {E (k1 + k2) + E (k1) + E (k2)} 

1 
-VN 

n1 (k1k2) Ak,+k, (1 -A~) (1 -At) b±k,-k, b"t,bt,<Do 
Bm Ak,Ak, {E (k1 + k2) + E (k1) + E tk2)} 

(k2,k1 + k2)2 At (1- A t+k,) (1- At,) b ;t b ±k, ct>~. 
X Ai,+k, AtE (k1) { E (k1 + k2) + E (k1) + E (k2)} 

With the aid of Eqs. (4.5), (2.13), (2.9) and (2.1) we 
can represent (4.21) in the form of an explicit 
function of coordinates. 

By a suitable method we can determine cl>3 and 
higher terms of the decomposition of the wave 
function of the lowest state of the Bose gas in 
powers of the parameter of the smallness of the 
interaction. 

The method of the "auxiliary variables" devel
oped above for application to the Bose _gas has a 
simple relation to the method of approxtmate second 
quantization of the weakly non-ideal Bose gas 2 • 

We express A (2.1) in the representation of 
d . k. . t secon quantizatiOn m momen urn space: 

1 "' + Pk = .r- L.J at-kat 
r N f 

(k =/= 0), (4.22) 

where aT, a£ are Bose operators. We separate in 
Eq. (4.22) terms which contain Bose operators with 
zero momentum and write 1\ in the form 

-t- ...L 
a_kaO GO ak (4.23) 

pk= VN + V N 

1 

·+vN 
f 

(f.PO, f+k) 

The first two terms in (4.23) represent the Bose 
operators bk and btwhich were used in our previous 
work 2 • 

We note that the wave function of the elementary 
excitations of the zeroth approximation (4.8) is 
identical in form with the function hypothesized by 
Feynman in his work on the theory of superfluidity 
of He II 8 . The correlation function of the zeroth 
approximation, which can be calculated with the 
help .of the variation derivative of the energy of the 
lowest state (2.15) with respect to the function of 
interaction by the relation 

_ 2V 8E0 

g (r)- N 2 8<D (r)' (4.21.) 

is also identical to the correlation function calcu
lated by Feynman. Thus we see that the results of 
Feynman agree with the zeroth approximation of 
our method. The further development of the methods 
of the present work can serve as the basis for 
improving the theory of superfluidity of He II. 

Translated by R. T. Beyer 
22 

8 R. P. Feynman, Phys. Rev. 94, 262 (1954) 
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ERRATA 

Rodionov et al, Soviet Phys. JETP 1, 64 (July, 1955) 
p. 64, column 2, line 19 

Bogoliubov and Zubarev, Soviet Phys. 1, 83 
' (July, 1955) 

p. 88, column 1, line 6 
p. 88, col. 1, 4th line from bottom 

Grametitskii et al, Soviet Phys. JETP 1, 562 
(November, 1955) 

p. 562, title 
p. 562, paragraphs 1 and 2 (3times) 
p. 563, column 1, 5th line from bottom 

Index to J. Tech. Phys. 
p. 374 

reads 

methyl or ethyl 

omits 
appears in 

"fissions" 
"fissions" 
"fissions" 

JULY, 1956 

should read 

methylalor ethylal 

is taken over 

are 

"disintegrations" 
"disintegrations" 
"disintegrations" 

Our apologies to Academician Abram Fedorovich loffe for interpreting his anniversary biography as an obituary. 
Like the report of Mark Twain's demise, it was a great exaggeration. 

ANNOUNCEMENf 

Beginning with the next issue (August, 1956), Soviet Physics JETP will appear monthly. Volume 3 (August, 
1956-January, 1957) will contain translations of all articles appearing in Volume 30 of the Journal of Experi
mental and Theoretical Physics of the USSR (January-June, 1956). Volume 4 (February-July, 1957) will be a 
translation of Volume 31 (July-December, 1~56) of the Soviet Journal. 

Subscribers to Soviet Physics JETP for the calender year 1956 will receive Volume 3 as the completion of 
their subscription. For new subscribers (beginning with Volume 3) the subscription price will be $60.00 per 

year (two volumes, twelve issues) in the United States and Canada, $64.00 per year elsewhere. The single 
issue price will remain at $6.00. 

Beginning in either July or August, 1956, the American Institute of Physics will commence translations of 
the Jourmi of Technical Physics of the USSR, the Acoustics Journal of the USSR and the physical sciences 
portions of Doklady. Price schedules for these journals are given below. Subscriptions should be addressed 
to the American Institute of Physics, 57 East 55 Street, New York 22, N. Y. 

Soviet Physics-Technical Physics 

A translation of the "Journal of Technical Physics" of the Academy of Sciences of the U.S.S.R. Eighteen 
issues per year, approximately 4,000 Russian pages. Annually, $90.00 domestic, $95.00 foreign. 

Soviet Physics-Acoustics 

A translation of the "Journal of Acoustics" of the Academy of Sciences of the U.S.S.R. Four issues per 
year, approximately 500 Russian pages. Annually, $20.00 domestic, $22.00 foreign. The 1955-issues of 
"Journal of Acoustics" U.S.S.R. will also be published. Will consist of two volumes, approximately 500 
pages, and the subscription price will be $20.00 for the set. 

Soviet Physics-Dokaldy 

A translation of the "Physics Section" of the Proceedings of the Academy of Sciences of the U.S.S.R. 
Six issues per year, approximately 900 Russian pages. Annually $25.00 domestic, $27.50 foreign. 
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